These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 19045118)

  • 1. Synthesis of CuInS2 fluorescent nanocrystals and enhancement of fluorescence by controlling crystal defect.
    Uehara M; Watanabe K; Tajiri Y; Nakamura H; Maeda H
    J Chem Phys; 2008 Oct; 129(13):134709. PubMed ID: 19045118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noninjection, one-pot synthesis of Cu-deficient CuInS2/ZnS core/shell quantum dots and their fluorescent properties.
    Nam DE; Song WS; Yang H
    J Colloid Interface Sci; 2011 Sep; 361(2):491-6. PubMed ID: 21665220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of high-quality I-III-VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors.
    Xie R; Rutherford M; Peng X
    J Am Chem Soc; 2009 Apr; 131(15):5691-7. PubMed ID: 19331353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape- and phase-controlled synthesis of monodisperse, single-crystalline ternary chalcogenide colloids through a convenient solution synthesis strategy.
    Du W; Qian X; Yin J; Gong Q
    Chemistry; 2007; 13(31):8840-6. PubMed ID: 17654756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noninjection gram-scale synthesis of monodisperse pyramidal CuInS2 nanocrystals and their size-dependent properties.
    Zhong H; Lo SS; Mirkovic T; Li Y; Ding Y; Li Y; Scholes GD
    ACS Nano; 2010 Sep; 4(9):5253-62. PubMed ID: 20815394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, structural, and optical properties of stable ZnS:Cu,Cl nanocrystals.
    Corrado C; Jiang Y; Oba F; Kozina M; Bridges F; Zhang JZ
    J Phys Chem A; 2009 Apr; 113(16):3830-9. PubMed ID: 19170574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-pot synthesis of CuInS2 nanocrystals using different anions to engineer their morphology and crystal phase.
    Tang A; Hu Z; Yin Z; Ye H; Yang C; Teng F
    Dalton Trans; 2015 May; 44(19):9251-9. PubMed ID: 25910188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of CulnS2, CulnSe2, and Cu(InxGa(1-x))Se2 (CIGS) nanocrystal "inks" for printable photovoltaics.
    Panthani MG; Akhavan V; Goodfellow B; Schmidtke JP; Dunn L; Dodabalapur A; Barbara PF; Korgel BA
    J Am Chem Soc; 2008 Dec; 130(49):16770-7. PubMed ID: 19049468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvothermal synthesis of zincblende and wurtzite CuInS2 nanocrystals and their photovoltaic application.
    Huang WC; Tseng CH; Chang SH; Tuan HY; Chiang CC; Lyu LM; Huang MH
    Langmuir; 2012 Jun; 28(22):8496-501. PubMed ID: 22607372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On doping CdS/ZnS core/shell nanocrystals with Mn.
    Yang Y; Chen O; Angerhofer A; Cao YC
    J Am Chem Soc; 2008 Nov; 130(46):15649-61. PubMed ID: 18950179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale synthesis of highly emissive and photostable CuInS2/ZnS nanocrystals through hybrid flow reactor.
    Lee J; Han CS
    Nanoscale Res Lett; 2014 Feb; 9(1):78. PubMed ID: 24533662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase transformation of biphasic Cu2S-CuInS2 to monophasic CuInS2 nanorods.
    Connor ST; Hsu CM; Weil BD; Aloni S; Cui Y
    J Am Chem Soc; 2009 Apr; 131(13):4962-6. PubMed ID: 19281233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radial-position-controlled doping of CdS/ZnS core/shell nanocrystals: surface effects and position-dependent properties.
    Yang Y; Chen O; Angerhofer A; Cao YC
    Chemistry; 2009; 15(13):3186-97. PubMed ID: 19206119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alloyed (ZnS)(x)(Cu2SnS3)(1-x) and (CuInS2)(x)(Cu2SnS3)(1-x) nanocrystals with arbitrary composition and broad tunable band gaps.
    Liu Q; Zhao Z; Lin Y; Guo P; Li S; Pan D; Ji X
    Chem Commun (Camb); 2011 Jan; 47(3):964-6. PubMed ID: 21079830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of monodisperse spherical nanocrystals.
    Park J; Joo J; Kwon SG; Jang Y; Hyeon T
    Angew Chem Int Ed Engl; 2007; 46(25):4630-60. PubMed ID: 17525914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A facile "dispersion-decomposition" route to metal sulfide nanocrystals.
    Zhuang Z; Lu X; Peng Q; Li Y
    Chemistry; 2011 Sep; 17(37):10445-52. PubMed ID: 21915921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low polydispersed copper-sulfide nanocrystals derived from various Cu-alkyl amine complexes.
    Kuzuya T; Itoh K; Sumiyama K
    J Colloid Interface Sci; 2008 Mar; 319(2):565-71. PubMed ID: 18155227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution-phase synthesis of SnSe nanocrystals for use in solar cells.
    Franzman MA; Schlenker CW; Thompson ME; Brutchey RL
    J Am Chem Soc; 2010 Mar; 132(12):4060-1. PubMed ID: 20201510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection.
    Li L; Reiss P
    J Am Chem Soc; 2008 Sep; 130(35):11588-9. PubMed ID: 18686956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.