These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 19045129)

  • 1. A molecular dynamics study of the phase transition in bcc metal nanoparticles.
    Shibuta Y; Suzuki T
    J Chem Phys; 2008 Oct; 129(14):144102. PubMed ID: 19045129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase transition in substrate-supported molybdenum nanoparticles: a molecular dynamics study.
    Shibuta Y; Suzuki T
    Phys Chem Chem Phys; 2010 Jan; 12(3):731-9. PubMed ID: 20066359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recrystallization of picosecond laser-melted ZnO nanoparticles in a liquid: a molecular dynamics study.
    Hu M; Poulikakos D; Grigoropoulos CP; Pan H
    J Chem Phys; 2010 Apr; 132(16):164504. PubMed ID: 20441285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation and evolution of metastable bcc phase during solidification of liquid Ag: a molecular dynamics simulation study.
    Tian ZA; Liu RS; Zheng CX; Liu HR; Hou ZY; Peng P
    J Phys Chem A; 2008 Dec; 112(48):12326-36. PubMed ID: 18973323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulations of the melting of aluminum nanoparticles.
    Alavi S; Thompson DL
    J Phys Chem A; 2006 Feb; 110(4):1518-23. PubMed ID: 16435812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanosolids, slushes, and nanoliquids: characterization of nanophases in metal clusters and nanoparticles.
    Li ZH; Truhlar DG
    J Am Chem Soc; 2008 Sep; 130(38):12698-711. PubMed ID: 18729357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ observation of oxidation of liquid droplets of tin and melting behavior of a tin particle covered with a tin oxide layer.
    Mima T; Takeuchi H; Arai S; Kishita K; Kuroda K; Saka H
    Microsc Res Tech; 2009 Mar; 72(3):223-31. PubMed ID: 19156703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleation and growth of C60 nanoparticles from the supersaturated vapor and from the undercooled liquid: a molecular simulation study.
    Ngale KN; Desgranges C; Delhommelle J
    J Chem Phys; 2009 Dec; 131(24):244515. PubMed ID: 20059087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular simulation of the crystallization of aluminum from the supercooled liquid.
    Desgranges C; Delhommelle J
    J Chem Phys; 2007 Oct; 127(14):144509. PubMed ID: 17935411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A molecular-dynamics study of structural and physical properties of nitromethane nanoparticles.
    Alavi S; Thompson DL
    J Chem Phys; 2004 Jun; 120(21):10231-9. PubMed ID: 15268047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallization and melting transitions of hexadecane droplets in polystyrene nanocapsules.
    Fette EV; Pham A; Adalsteinsson T
    J Phys Chem B; 2008 May; 112(17):5403-11. PubMed ID: 18393480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase transformations during sintering of titania nanoparticles.
    Koparde VN; Cummings PT
    ACS Nano; 2008 Aug; 2(8):1620-4. PubMed ID: 19206364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study of microstructural evolution during melting and crystallization.
    Xiao S; Hu W
    J Chem Phys; 2006 Jul; 125(1):014503. PubMed ID: 16863312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleation of hcp and fcc phases in bcc iron under uniform compression: classical molecular dynamics simulations.
    Wang BT; Shao JL; Zhang GC; Li WD; Zhang P
    J Phys Condens Matter; 2010 Nov; 22(43):435404. PubMed ID: 21403328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melting dynamics of superheated argon: nucleation and growth.
    Luo SN; Zheng L; Strachan A; Swift DC
    J Chem Phys; 2007 Jan; 126(3):034505. PubMed ID: 17249882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio melting curve of molybdenum by the phase coexistence method.
    Cazorla C; Gillan MJ; Taioli S; Alfè D
    J Chem Phys; 2007 May; 126(19):194502. PubMed ID: 17523817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of salt on the melting of ice: A molecular dynamics simulation study.
    Kim JS; Yethiraj A
    J Chem Phys; 2008 Sep; 129(12):124504. PubMed ID: 19045033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulations of melting and the glass transition of nitromethane.
    Zheng L; Luo SN; Thompson DL
    J Chem Phys; 2006 Apr; 124(15):154504. PubMed ID: 16674239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulation of phase competition in terbium.
    Song H; Mendelev MI
    J Chem Phys; 2018 Dec; 149(24):244501. PubMed ID: 30599751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations of melting of perfect crystalline hexahydro-1,3,5-trinitro-1,3,5-s-triazine.
    Zheng L; Thompson DL
    J Chem Phys; 2006 Aug; 125(8):084505. PubMed ID: 16965027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.