These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 19045165)

  • 1. On the relationship between two popular lattice models for polymer melts.
    Subramanian G; Shanbhag S
    J Chem Phys; 2008 Oct; 129(14):144904. PubMed ID: 19045165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying chain reptation in entangled polymer melts: topological and dynamical mapping of atomistic simulation results onto the tube model.
    Stephanou PS; Baig C; Tsolou G; Mavrantzas VG; Kröger M
    J Chem Phys; 2010 Mar; 132(12):124904. PubMed ID: 20370147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. I. Statics.
    Halverson JD; Lee WB; Grest GS; Grosberg AY; Kremer K
    J Chem Phys; 2011 May; 134(20):204904. PubMed ID: 21639474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. II. Dynamics.
    Halverson JD; Lee WB; Grest GS; Grosberg AY; Kremer K
    J Chem Phys; 2011 May; 134(20):204905. PubMed ID: 21639475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From mesoscale back to atomistic models: a fast reverse-mapping procedure for vinyl polymer chains.
    Santangelo G; Matteo AD; Müller-Plathe F; Milano G
    J Phys Chem B; 2007 Mar; 111(11):2765-73. PubMed ID: 17319712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statics, linear, and nonlinear dynamics of entangled polystyrene melts simulated through the primitive chain network model.
    Yaoita T; Isaki T; Masubuchi Y; Watanabe H; Ianniruberto G; Greco F; Marrucci G
    J Chem Phys; 2008 Apr; 128(15):154901. PubMed ID: 18433271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Static properties of end-tethered polymers in good solution: a comparison between different models.
    Kreer T; Metzger S; Müller M; Binder K; Baschnagel J
    J Chem Phys; 2004 Feb; 120(8):4012-23. PubMed ID: 15268567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative study of fluctuation effects by fast lattice Monte Carlo simulations. V. incompressible homopolymer melts.
    Zhang P; Yang D; Wang Q
    J Phys Chem B; 2014 Oct; 118(41):12059-67. PubMed ID: 25233133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the chain length dependence of local correlations in polymer melts and a perturbation theory of symmetric polymer blends.
    Morse DC; Chung JK
    J Chem Phys; 2009 Jun; 130(22):224901. PubMed ID: 19530783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A finite excluded volume bond-fluctuation model: static properties of dense polymer melts revisited.
    Wittmer JP; Cavallo A; Kreer T; Baschnagel J; Johner A
    J Chem Phys; 2009 Aug; 131(6):064901. PubMed ID: 19691405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unbiased sampling of lattice Hamilton path ensembles.
    Mansfield ML
    J Chem Phys; 2006 Oct; 125(15):154103. PubMed ID: 17059235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymer chain generation for coarse-grained models using radical-like polymerization.
    Perez M; Lame O; Leonforte F; Barrat JL
    J Chem Phys; 2008 Jun; 128(23):234904. PubMed ID: 18570525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Derivation of free energy expressions for tube models from coarse-grained slip-link models.
    Steenbakkers RJ; Schieber JD
    J Chem Phys; 2012 Jul; 137(3):034901. PubMed ID: 22830727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly and glass-formation in a lattice model of telechelic polymer melts: Influence of stiffness of the sticky bonds.
    Xu WS; Freed KF
    J Chem Phys; 2016 Jun; 144(21):214903. PubMed ID: 27276966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multiple time step scheme for multiresolved models of macromolecules.
    Di Pasquale N; Gowers RJ; Carbone P
    J Comput Chem; 2014 Jun; 35(16):1199-207. PubMed ID: 24676734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical study of solvent effects on the coil-globule transition.
    Polson JM; Opps SB; Abou Risk N
    J Chem Phys; 2009 Jun; 130(24):244902. PubMed ID: 19566176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deuteron and proton spin-lattice relaxation dispersion of polymer melts: intrasegment, intrachain, and interchain contributions.
    Kehr M; Fatkullin N; Kimmich R
    J Chem Phys; 2007 Aug; 127(8):084911. PubMed ID: 17764298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective control of the transport coefficients of a coarse-grained liquid and polymer models using the dissipative particle dynamics and Lowe-Andersen equations of motion.
    Qian HJ; Liew CC; Müller-Plathe F
    Phys Chem Chem Phys; 2009 Mar; 11(12):1962-9. PubMed ID: 19280007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How proteins squeeze through polymer networks: a Cartesian lattice study.
    Wedemeier A; Merlitz H; Wu CX; Langowski J
    J Chem Phys; 2009 Aug; 131(6):064905. PubMed ID: 19691409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure, dimensions, and entanglement statistics of long linear polyethylene chains.
    Foteinopoulou K; Karayiannis NCh; Laso M
    J Phys Chem B; 2009 Jan; 113(2):442-55. PubMed ID: 19086892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.