These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 19045203)
1. Full quantum vibrational simulation of the relaxation of the cyanide ion in water using the Ehrenfest method with quantum corrections. Bastida A; Zúñiga J; Requena A; Miguel B J Chem Phys; 2008 Oct; 129(15):154501. PubMed ID: 19045203 [TBL] [Abstract][Full Text] [Related]
2. Hybrid quantum/classical simulation of the vibrational relaxation of the bend fundamental in liquid water. Bastida A; Zúñiga J; Requena A; Miguel B J Chem Phys; 2009 Nov; 131(20):204505. PubMed ID: 19947692 [TBL] [Abstract][Full Text] [Related]
3. Molecular dynamics with quantum transitions study of the vibrational relaxation of the HOD bend fundamental in liquid D2O. Bastida A; Zúñiga J; Requena A; Miguel B J Chem Phys; 2012 Jun; 136(23):234507. PubMed ID: 22779606 [TBL] [Abstract][Full Text] [Related]
4. The Ehrenfest method with quantum corrections to simulate the relaxation of molecules in solution: equilibrium and dynamics. Bastida A; Cruz C; Zúñiga J; Requena A; Miguel B J Chem Phys; 2007 Jan; 126(1):014503. PubMed ID: 17212496 [TBL] [Abstract][Full Text] [Related]
5. Hybrid quantum/classical simulations of the vibrational relaxation of the amide I mode of N-methylacetamide in D2O solution. Bastida A; Soler MA; Zúñiga J; Requena A; Kalstein A; Fernández-Alberti S J Phys Chem B; 2012 Mar; 116(9):2969-80. PubMed ID: 22304000 [TBL] [Abstract][Full Text] [Related]
6. Vibrational energy relaxation of the bend fundamental of dilute water in liquid chloroform and d-chloroform. Lin YS; Ramesh SG; Shorb JM; Sibert EL; Skinner JL J Phys Chem B; 2008 Jan; 112(2):390-8. PubMed ID: 18044869 [TBL] [Abstract][Full Text] [Related]
7. Theoretical study of the temperature dependence of the vibrational relaxation of the H2O bend fundamental in liquid water and the subsequent distortion of the hydrogen bond network. Miguel B; Zúñiga J; Requena A; Bastida A J Phys Chem B; 2014 Aug; 118(31):9427-37. PubMed ID: 25050871 [TBL] [Abstract][Full Text] [Related]
8. Instantaneous normal modes, resonances, and decay channels in the vibrational relaxation of the amide I mode of N-methylacetamide-D in liquid deuterated water. Bastida A; Soler MA; Zúñiga J; Requena A; Kalstein A; Fernández-Alberti S J Chem Phys; 2010 Jun; 132(22):224501. PubMed ID: 20550402 [TBL] [Abstract][Full Text] [Related]
9. Relaxation pathways of the OD stretch fundamental of HOD in liquid H Miguel B; Zúñiga J; Requena A; Bastida A J Chem Phys; 2016 Dec; 145(24):244502. PubMed ID: 28049324 [TBL] [Abstract][Full Text] [Related]
10. Vibrational energy relaxation of a hydrogen-bonded complex dissolved in a polar liquid via the mixed quantum-classical Liouville method. Hanna G; Geva E J Phys Chem B; 2008 Apr; 112(13):4048-58. PubMed ID: 18331018 [TBL] [Abstract][Full Text] [Related]
11. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase. Glover WJ; Larsen RE; Schwartz BJ J Chem Phys; 2008 Oct; 129(16):164505. PubMed ID: 19045282 [TBL] [Abstract][Full Text] [Related]
12. Classical vs quantum vibrational energy relaxation pathways in solvated polyatomic molecules. Ka BJ; Geva E J Phys Chem A; 2006 Dec; 110(49):13131-8. PubMed ID: 17149825 [TBL] [Abstract][Full Text] [Related]
13. Comprehensive investigation of vibrational relaxation of non-hydrogen-bonded water molecules in liquids. Seifert G; Patzlaff T; Graener H J Chem Phys; 2006 Oct; 125(15):154506. PubMed ID: 17059271 [TBL] [Abstract][Full Text] [Related]
14. Vibrational energy relaxation of azulene studied by the transient grating method. II. Liquid solvents. Kimura Y; Yamamoto Y; Terazima M J Chem Phys; 2005 Aug; 123(5):054513. PubMed ID: 16108675 [TBL] [Abstract][Full Text] [Related]
15. Nonequilibrium molecular dynamics simulations of vibrational energy relaxation of HOD in D2O. Kandratsenka A; Schroeder J; Schwarzer D; Vikhrenko VS J Chem Phys; 2009 May; 130(17):174507. PubMed ID: 19425790 [TBL] [Abstract][Full Text] [Related]
16. Vibrational lifetimes of cyanide ion in aqueous solution from molecular dynamics simulations: intermolecular vs intramolecular accepting modes. Talapatra S; Geva E J Phys Chem B; 2014 Jul; 118(26):7395-404. PubMed ID: 24927159 [TBL] [Abstract][Full Text] [Related]
17. Vibrational energy relaxation of azide in water. Li S; Schmidt JR; Skinner JL J Chem Phys; 2006 Dec; 125(24):244507. PubMed ID: 17199355 [TBL] [Abstract][Full Text] [Related]
18. On the role of nonbonded interactions in vibrational energy relaxation of cyanide in water. Lee MW; Meuwly M J Phys Chem A; 2011 May; 115(20):5053-61. PubMed ID: 21542619 [TBL] [Abstract][Full Text] [Related]
19. Quantum state-resolved energy transfer dynamics at gas-liquid interfaces: IR laser studies of CO2 scattering from perfluorinated liquids. Perkins BG; Häber T; Nesbitt DJ J Phys Chem B; 2005 Sep; 109(34):16396-405. PubMed ID: 16853084 [TBL] [Abstract][Full Text] [Related]