BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 19045203)

  • 1. Full quantum vibrational simulation of the relaxation of the cyanide ion in water using the Ehrenfest method with quantum corrections.
    Bastida A; Zúñiga J; Requena A; Miguel B
    J Chem Phys; 2008 Oct; 129(15):154501. PubMed ID: 19045203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid quantum/classical simulation of the vibrational relaxation of the bend fundamental in liquid water.
    Bastida A; Zúñiga J; Requena A; Miguel B
    J Chem Phys; 2009 Nov; 131(20):204505. PubMed ID: 19947692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics with quantum transitions study of the vibrational relaxation of the HOD bend fundamental in liquid D2O.
    Bastida A; Zúñiga J; Requena A; Miguel B
    J Chem Phys; 2012 Jun; 136(23):234507. PubMed ID: 22779606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Ehrenfest method with quantum corrections to simulate the relaxation of molecules in solution: equilibrium and dynamics.
    Bastida A; Cruz C; Zúñiga J; Requena A; Miguel B
    J Chem Phys; 2007 Jan; 126(1):014503. PubMed ID: 17212496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid quantum/classical simulations of the vibrational relaxation of the amide I mode of N-methylacetamide in D2O solution.
    Bastida A; Soler MA; Zúñiga J; Requena A; Kalstein A; Fernández-Alberti S
    J Phys Chem B; 2012 Mar; 116(9):2969-80. PubMed ID: 22304000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibrational energy relaxation of the bend fundamental of dilute water in liquid chloroform and d-chloroform.
    Lin YS; Ramesh SG; Shorb JM; Sibert EL; Skinner JL
    J Phys Chem B; 2008 Jan; 112(2):390-8. PubMed ID: 18044869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical study of the temperature dependence of the vibrational relaxation of the H2O bend fundamental in liquid water and the subsequent distortion of the hydrogen bond network.
    Miguel B; Zúñiga J; Requena A; Bastida A
    J Phys Chem B; 2014 Aug; 118(31):9427-37. PubMed ID: 25050871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Instantaneous normal modes, resonances, and decay channels in the vibrational relaxation of the amide I mode of N-methylacetamide-D in liquid deuterated water.
    Bastida A; Soler MA; Zúñiga J; Requena A; Kalstein A; Fernández-Alberti S
    J Chem Phys; 2010 Jun; 132(22):224501. PubMed ID: 20550402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relaxation pathways of the OD stretch fundamental of HOD in liquid H
    Miguel B; Zúñiga J; Requena A; Bastida A
    J Chem Phys; 2016 Dec; 145(24):244502. PubMed ID: 28049324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibrational energy relaxation of a hydrogen-bonded complex dissolved in a polar liquid via the mixed quantum-classical Liouville method.
    Hanna G; Geva E
    J Phys Chem B; 2008 Apr; 112(13):4048-58. PubMed ID: 18331018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase.
    Glover WJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2008 Oct; 129(16):164505. PubMed ID: 19045282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classical vs quantum vibrational energy relaxation pathways in solvated polyatomic molecules.
    Ka BJ; Geva E
    J Phys Chem A; 2006 Dec; 110(49):13131-8. PubMed ID: 17149825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive investigation of vibrational relaxation of non-hydrogen-bonded water molecules in liquids.
    Seifert G; Patzlaff T; Graener H
    J Chem Phys; 2006 Oct; 125(15):154506. PubMed ID: 17059271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibrational energy relaxation of azulene studied by the transient grating method. II. Liquid solvents.
    Kimura Y; Yamamoto Y; Terazima M
    J Chem Phys; 2005 Aug; 123(5):054513. PubMed ID: 16108675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonequilibrium molecular dynamics simulations of vibrational energy relaxation of HOD in D2O.
    Kandratsenka A; Schroeder J; Schwarzer D; Vikhrenko VS
    J Chem Phys; 2009 May; 130(17):174507. PubMed ID: 19425790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibrational lifetimes of cyanide ion in aqueous solution from molecular dynamics simulations: intermolecular vs intramolecular accepting modes.
    Talapatra S; Geva E
    J Phys Chem B; 2014 Jul; 118(26):7395-404. PubMed ID: 24927159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibrational energy relaxation of azide in water.
    Li S; Schmidt JR; Skinner JL
    J Chem Phys; 2006 Dec; 125(24):244507. PubMed ID: 17199355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the role of nonbonded interactions in vibrational energy relaxation of cyanide in water.
    Lee MW; Meuwly M
    J Phys Chem A; 2011 May; 115(20):5053-61. PubMed ID: 21542619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum state-resolved energy transfer dynamics at gas-liquid interfaces: IR laser studies of CO2 scattering from perfluorinated liquids.
    Perkins BG; Häber T; Nesbitt DJ
    J Phys Chem B; 2005 Sep; 109(34):16396-405. PubMed ID: 16853084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibrational and rotational dynamics of cyanoferrates in solution.
    Sando GM; Zhong Q; Owrutsky JC
    J Chem Phys; 2004 Aug; 121(5):2158-68. PubMed ID: 15260770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.