These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 19045317)

  • 1. Conformational response of supercoiled DNA to confinement in a nanochannel.
    Lim W; Ng SY; Lee C; Feng YP; van der Maarel JR
    J Chem Phys; 2008 Oct; 129(16):165102. PubMed ID: 19045317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of ionic conditions on the conformations of supercoiled DNA. II. Equilibrium catenation.
    Rybenkov VV; Vologodskii AV; Cozzarelli NR
    J Mol Biol; 1997 Mar; 267(2):312-23. PubMed ID: 9096228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Na+ and Mg2+ on the structures of supercoiled DNAs: comparison of simulations with experiments.
    Gebe JA; Delrow JJ; Heath PJ; Fujimoto BS; Stewart DW; Schurr JM
    J Mol Biol; 1996 Sep; 262(2):105-28. PubMed ID: 8831783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of salt on the structure and energetics of supercoiled DNA.
    Schlick T; Li B; Olson WK
    Biophys J; 1994 Dec; 67(6):2146-66. PubMed ID: 7696459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Internal motion of supercoiled DNA: brownian dynamics simulations of site juxtaposition.
    Jian H; Schlick T; Vologodskii A
    J Mol Biol; 1998 Nov; 284(2):287-96. PubMed ID: 9813118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On higher buckling transitions in supercoiled DNA.
    Schlick T; Olson WK; Westcott T; Greenberg JP
    Biopolymers; 1994 May; 34(5):565-97. PubMed ID: 8003619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The twist, writhe and overall shape of supercoiled DNA change during counterion-induced transition from a loosely to a tightly interwound superhelix. Possible implications for DNA structure in vivo.
    Bednar J; Furrer P; Stasiak A; Dubochet J; Egelman EH; Bates AD
    J Mol Biol; 1994 Jan; 235(3):825-47. PubMed ID: 8289322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational and thermodynamic properties of supercoiled DNA.
    Vologodskii AV; Cozzarelli NR
    Annu Rev Biophys Biomol Struct; 1994; 23():609-43. PubMed ID: 7919794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA confined in nanochannels: hairpin tightening by entropic depletion.
    Odijk T
    J Chem Phys; 2006 Nov; 125(20):204904. PubMed ID: 17144737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of electrostatic screening on the conformation of single DNA molecules confined in a nanochannel.
    Zhang C; Zhang F; van Kan JA; van der Maarel JR
    J Chem Phys; 2008 Jun; 128(22):225109. PubMed ID: 18554066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating changes of writhe in computer simulations of supercoiled DNA.
    de Vries R
    J Chem Phys; 2005 Feb; 122(6):064905. PubMed ID: 15740406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient chain moves for Monte Carlo simulations of a wormlike DNA model: excluded volume, supercoils, site juxtapositions, knots, and comparisons with random-flight and lattice models.
    Liu Z; Chan HS
    J Chem Phys; 2008 Apr; 128(14):145104. PubMed ID: 18412482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulations of supercoiled DNAs confined to a plane.
    Fujimoto BS; Schurr JM
    Biophys J; 2002 Feb; 82(2):944-62. PubMed ID: 11806935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo analysis of the conformation of DNA catenanes.
    Vologodskii AV; Cozzarelli NR
    J Mol Biol; 1993 Aug; 232(4):1130-40. PubMed ID: 8371271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic-undulatory theory of plectonemically supercoiled DNA.
    Ubbink J; Odijk T
    Biophys J; 1999 May; 76(5):2502-19. PubMed ID: 10233067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of ionic conditions on the conformations of supercoiled DNA. I. Sedimentation analysis.
    Rybenkov VV; Vologodskii AV; Cozzarelli NR
    J Mol Biol; 1997 Mar; 267(2):299-311. PubMed ID: 9096227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of the persistence length of DNA from the torsion elastic constant and supercoiling free energy: effect of ethylene glycol.
    Rangel DP; Fujimoto BS; Schurr JM
    J Phys Chem B; 2008 Oct; 112(42):13359-66. PubMed ID: 18717543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer simulation of protein-induced structural changes in closed circular DNA.
    Zhang P; Tobias I; Olson WK
    J Mol Biol; 1994 Sep; 242(3):271-90. PubMed ID: 8089847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of crowding on the conformation of interwound DNA strands from neutron scattering measurements and Monte Carlo simulations.
    Zhu X; Ng SY; Gupta AN; Feng YP; Ho B; Lapp A; Egelhaaf SU; Forsyth VT; Haertlein M; Moulin M; Schweins R; van der Maarel JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061905. PubMed ID: 20866438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Density-functional theory and Monte Carlo simulation study on the electric double layer around DNA in mixed-size counterion systems.
    Wang K; Yu YX; Gao GH; Luo GS
    J Chem Phys; 2005 Dec; 123(23):234904. PubMed ID: 16392946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.