These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 19045339)

  • 1. Exciton scattering approach for branched conjugated molecules and complexes. III. Applications.
    Wu C; Malinin SV; Tretiak S; Chernyak VY
    J Chem Phys; 2008 Nov; 129(17):174113. PubMed ID: 19045339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exciton scattering approach for branched conjugated molecules and complexes. II. Extraction of the exciton scattering parameters from quantum-chemical calculations.
    Wu C; Malinin SV; Tretiak S; Chernyak VY
    J Chem Phys; 2008 Nov; 129(17):174112. PubMed ID: 19045338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exciton scattering approach for branched conjugated molecules and complexes. IV. Transition dipoles and optical spectra.
    Li H; Malinin SV; Tretiak S; Chernyak VY
    J Chem Phys; 2010 Mar; 132(12):124103. PubMed ID: 20370110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exciton scattering approach for branched conjugated molecules and complexes. I. Formalism.
    Wu C; Malinin SV; Tretiak S; Chernyak VY
    J Chem Phys; 2008 Nov; 129(17):174111. PubMed ID: 19045337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exciton scattering on symmetric branching centers in conjugated molecules.
    Li H; Wu C; Malinin SV; Tretiak S; Chernyak VY
    J Phys Chem B; 2011 May; 115(18):5465-75. PubMed ID: 21194223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale modeling of electronic excitations in branched conjugated molecules using an exciton scattering approach.
    Wu C; Malinin SV; Tretiak S; Chernyak VY
    Phys Rev Lett; 2008 Feb; 100(5):057405. PubMed ID: 18352429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective tight-binding models for excitons in branched conjugated molecules.
    Li H; Malinin SV; Tretiak S; Chernyak VY
    J Chem Phys; 2013 Aug; 139(6):064109. PubMed ID: 23947845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural Atomic Orbital Representation for Optical Spectra Calculations in the Exciton Scattering Approach.
    Li H; Chernyak VY; Tretiak S
    J Phys Chem Lett; 2012 Dec; 3(24):3734-9. PubMed ID: 26291103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How Geometric Distortions Scatter Electronic Excitations in Conjugated Macromolecules.
    Shi T; Li H; Tretiak S; Chernyak VY
    J Phys Chem Lett; 2014 Nov; 5(22):3946-52. PubMed ID: 26276475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excited-State Structure Modifications Due to Molecular Substituents and Exciton Scattering in Conjugated Molecules.
    Li H; Catanzaro MJ; Tretiak S; Chernyak VY
    J Phys Chem Lett; 2014 Feb; 5(4):641-7. PubMed ID: 26270830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of unidirectional exciton migration to the molecular periphery in a photoexcited compact dendrimer.
    Nishioka K; Suzuki M
    J Chem Phys; 2005 Jan; 122(2):024708. PubMed ID: 15638615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Both intra- and interstrand charge-transfer excited states in aqueous B-DNA are present at energies comparable to, or just above, the (1)pipi* excitonic bright states.
    Lange AW; Herbert JM
    J Am Chem Soc; 2009 Mar; 131(11):3913-22. PubMed ID: 19292489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale co-organization of quantum dots and conjugated polymers using polymeric micelles as templates.
    Wang M; Kumar S; Lee A; Felorzabihi N; Shen L; Zhao F; Froimowicz P; Scholes GD; Winnik MA
    J Am Chem Soc; 2008 Jul; 130(29):9481-91. PubMed ID: 18576641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-molecule spectroscopy of conjugated polymers.
    Barbara PF; Gesquiere AJ; Park SJ; Lee YJ
    Acc Chem Res; 2005 Jul; 38(7):602-10. PubMed ID: 16028895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.
    Kim J; Wong CY; Scholes GD
    Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic nonadiabatic interactions and ultrafast internal conversion in phenylacetylene radical cation.
    Reddy VS; Mahapatra S
    J Chem Phys; 2009 Mar; 130(12):124303. PubMed ID: 19334826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamical steering and electronic excitation in NO scattering from a gold surface.
    Shenvi N; Roy S; Tully JC
    Science; 2009 Nov; 326(5954):829-32. PubMed ID: 19892977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photophysics of phenalenone: quantum-mechanical investigation of singlet-triplet intersystem crossing.
    Daza MC; Doerr M; Salzmann S; Marian CM; Thiel W
    Phys Chem Chem Phys; 2009 Mar; 11(11):1688-96. PubMed ID: 19290339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charge-transfer excitons at organic semiconductor surfaces and interfaces.
    Zhu XY; Yang Q; Muntwiler M
    Acc Chem Res; 2009 Nov; 42(11):1779-87. PubMed ID: 19378979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conjugated polyelectrolytes: synthesis, photophysics, and applications.
    Jiang H; Taranekar P; Reynolds JR; Schanze KS
    Angew Chem Int Ed Engl; 2009; 48(24):4300-16. PubMed ID: 19444838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.