These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 19045379)

  • 41. Aminolevulinic acid-loaded Witepsol microparticles manufactured using a spray congealing procedure: implications for topical photodynamic therapy.
    Al-Kassas R; Donnelly RF; McCarron PA
    J Pharm Pharmacol; 2009 Sep; 61(9):1125-35. PubMed ID: 19703361
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Streaming potential for microchannels of arbitrary cross-sectional shapes for thin electric double layers.
    Park HM; Lim JY
    J Colloid Interface Sci; 2009 Aug; 336(2):834-41. PubMed ID: 19464020
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optimized equation of the state of the square-well fluid of variable range based on a fourth-order free-energy expansion.
    Espíndola-Heredia R; del Río F; Malijevsky A
    J Chem Phys; 2009 Jan; 130(2):024509. PubMed ID: 19154040
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Exergy optimization in a steady moving bed heat exchanger.
    Soria-Verdugo A; Almendros-Ibáñez JA; Ruiz-Rivas U; Santana D
    Ann N Y Acad Sci; 2009 Apr; 1161():584-600. PubMed ID: 19426351
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Measuring the friction of nanoparticles: a new route towards a better understanding of nanoscale friction.
    Schirmeisen A; Schwarz UD
    Chemphyschem; 2009 Oct; 10(14):2373-82. PubMed ID: 19701951
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A novel weighted density functional theory for adsorption, fluid-solid interfacial tension, and disjoining properties of simple liquid films on planar solid surfaces.
    Yu YX
    J Chem Phys; 2009 Jul; 131(2):024704. PubMed ID: 19604007
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Two-dimensional model of low Mach number vortex sound generation in a lined duct.
    Tang SK; Lau CK
    J Acoust Soc Am; 2009 Sep; 126(3):1005-14. PubMed ID: 19739713
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Long wavelength approximation to peristaltic motion of an Oldroyd 4-constant fluid in a planar channel.
    Ali N; Wang Y; Hayat T; Oberlack M
    Biorheology; 2008; 45(5):611-28. PubMed ID: 19065009
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Particle tracking model for colloid transport near planar surfaces covered with spherical asperities.
    Kemps JA; Bhattacharjee S
    Langmuir; 2009 Jun; 25(12):6887-97. PubMed ID: 19505160
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A phase-field approach to no-slip boundary conditions in dissipative particle dynamics and other particle models for fluid flow in geometrically complex confined systems.
    Xu Z; Meakin P
    J Chem Phys; 2009 Jun; 130(23):234103. PubMed ID: 19548707
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Deposition of colloid particles at heterogeneous and patterned surfaces.
    Adamczyk Z; Nattich M; Barbasz J
    Adv Colloid Interface Sci; 2009; 147-148():2-17. PubMed ID: 19193360
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Extension of the Helmholtz-Smoluchowski velocity to the hydrophobic microchannels with velocity slip.
    Park HM; Kim TW
    Lab Chip; 2009 Jan; 9(2):291-6. PubMed ID: 19107287
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Migration of a neutrally buoyant particle in poiseuille flow: a possible explanation.
    Gotoh K
    Nature; 1970 Feb; 225(5235):848-50. PubMed ID: 16056781
    [No Abstract]   [Full Text] [Related]  

  • 54. Phonon Poiseuille Flow in Quasi-One-Dimensional Single Crystals.
    Smontara A; Lasjaunias JC; Maynard R
    Phys Rev Lett; 1996 Dec; 77(27):5397-5400. PubMed ID: 10062793
    [No Abstract]   [Full Text] [Related]  

  • 55. Molecular dynamics of Poiseuille flow and moving contact lines.
    Koplik J; Banavar JR; Willemsen JF
    Phys Rev Lett; 1988 Mar; 60(13):1282-1285. PubMed ID: 10037995
    [No Abstract]   [Full Text] [Related]  

  • 56. Mutual friction between parallel two-dimensional electron systems.
    Gramila TJ; Eisenstein JP; MacDonald AH; Pfeiffer LN; West KW
    Phys Rev Lett; 1991 Mar; 66(9):1216-1219. PubMed ID: 10044025
    [No Abstract]   [Full Text] [Related]  

  • 57. Collective friction coefficients in the relaxation time approximation.
    Ivanyuk FA; Pomorski K
    Phys Rev C Nucl Phys; 1996 Apr; 53(4):1861-1867. PubMed ID: 9971139
    [No Abstract]   [Full Text] [Related]  

  • 58. Quasi-two-dimensional electrodeposition under forced fluid flow.
    López-Tomàs L; Claret J; Sagués F
    Phys Rev Lett; 1993 Dec; 71(26):4373-4376. PubMed ID: 10055230
    [No Abstract]   [Full Text] [Related]  

  • 59. Lubrication approximation for microparticles moving along parallel walls.
    Ekiel-Jezewska ML; Wajnryb E; Bławzdziewicz J; Feuillebois F
    J Chem Phys; 2008 Nov; 129(18):181102. PubMed ID: 19045379
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spherical particle in Poiseuille flow between planar walls.
    Jones RB
    J Chem Phys; 2004 Jul; 121(1):483-500. PubMed ID: 15260570
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.