These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 19045382)

  • 1. Comparison of interaction potentials of liquid water with respect to their consistency with neutron diffraction data of pure heavy water.
    Pusztai L; Pizio O; Sokolowski S
    J Chem Phys; 2008 Nov; 129(18):184103. PubMed ID: 19045382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the structure of aqueous cesium chloride solutions by combining diffraction experiments, molecular dynamics simulations, and reverse Monte Carlo modeling.
    Mile V; Pusztai L; Dominguez H; Pizio O
    J Phys Chem B; 2009 Aug; 113(31):10760-9. PubMed ID: 19588949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clusters of classical water models.
    Kiss PT; Baranyai A
    J Chem Phys; 2009 Nov; 131(20):204310. PubMed ID: 19947683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the range of water structure models compatible with X-ray and neutron diffraction data.
    Wikfeldt KT; Leetmaa M; Ljungberg MP; Nilsson A; Pettersson LG
    J Phys Chem B; 2009 May; 113(18):6246-55. PubMed ID: 19358575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature dependence of the hydrophobic hydration and interaction of simple solutes: an examination of five popular water models.
    Paschek D
    J Chem Phys; 2004 Apr; 120(14):6674-90. PubMed ID: 15267560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemometric study of liquid water simulations. I. The parameters of the TIP4P model potential.
    Hernandes MZ; da Silva JB; Longo RL
    J Comput Chem; 2003 Jun; 24(8):973-81. PubMed ID: 12720318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydration structure in concentrated aqueous lithium chloride solutions: a reverse Monte Carlo based combination of molecular dynamics simulations and diffraction data.
    Harsányi I; Pusztai L
    J Chem Phys; 2012 Nov; 137(20):204503. PubMed ID: 23206015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the structure of aqueous cesium fluoride and cesium iodide solutions: diffraction experiments, molecular dynamics simulations, and reverse Monte Carlo modeling.
    Mile V; Gereben O; Kohara S; Pusztai L
    J Phys Chem B; 2012 Aug; 116(32):9758-67. PubMed ID: 22794148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure of liquid water by polarized neutron diffraction and reverse Monte Carlo modelling.
    Temleitner L; Pusztai L; Schweika W
    J Phys Condens Matter; 2007 Aug; 19(33):335207. PubMed ID: 21694130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum dynamics of H2, D2, and HD in the small dodecahedral cage of clathrate hydrate: evaluating H2-water nanocage interaction potentials by comparison of theory with inelastic neutron scattering experiments.
    Xu M; Sebastianelli F; Bacić Z
    J Chem Phys; 2008 Jun; 128(24):244715. PubMed ID: 18601373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen bonding and molecular aggregates in liquid methanol, ethanol, and 1-propanol.
    Vrhovšek A; Gereben O; Jamnik A; Pusztai L
    J Phys Chem B; 2011 Nov; 115(46):13473-88. PubMed ID: 21916497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutron diffraction data and molecular dynamics simulations of the molten mixture Ag(Br0.7I0.3).
    Bitrián V; Trullàs J; Silbert M; Enosaki T; Kawakita Y; Takeda S
    J Chem Phys; 2006 Nov; 125(18):184510. PubMed ID: 17115768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffraction and IR/Raman data do not prove tetrahedral water.
    Leetmaa M; Wikfeldt KT; Ljungberg MP; Odelius M; Swenson J; Nilsson A; Pettersson LG
    J Chem Phys; 2008 Aug; 129(8):084502. PubMed ID: 19044830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of the dynamics of poly(ethylene oxide) by combining molecular dynamic simulations and neutron scattering experiments.
    Brodeck M; Alvarez F; Arbe A; Juranyi F; Unruh T; Holderer O; Colmenero J; Richter D
    J Chem Phys; 2009 Mar; 130(9):094908. PubMed ID: 19275425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of aqueous proline via parallel tempering molecular dynamics and neutron diffraction.
    Troitzsch RZ; Martyna GJ; McLain SE; Soper AK; Crain J
    J Phys Chem B; 2007 Jul; 111(28):8210-22. PubMed ID: 17592868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum effects in liquid water and ice: model dependence.
    Hernández de la Peña L; Kusalik PG
    J Chem Phys; 2006 Aug; 125(5):054512. PubMed ID: 16942231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanometer range correlations between molecular orientations in liquids of molecules with perfect tetrahedral shape: CCl(4), SiCl(4), GeCl(4), and SnCl(4).
    Pothoczki S; Temleitner L; Jóvári P; Kohara S; Pusztai L
    J Chem Phys; 2009 Feb; 130(6):064503. PubMed ID: 19222280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo simulations of critical cluster sizes and nucleation rates of water.
    Merikanto J; Vehkamaki H; Zapadinsky E
    J Chem Phys; 2004 Jul; 121(2):914-24. PubMed ID: 15260623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benchmarking polarizable molecular dynamics simulations of aqueous sodium hydroxide by diffraction measurements.
    Vácha R; Megyes T; Bakó I; Pusztai L; Jungwirth P
    J Phys Chem A; 2009 Apr; 113(16):4022-7. PubMed ID: 19209921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulating vapor-liquid nucleation of water: A combined histogram-reweighting and aggregation-volume-bias Monte Carlo investigation for fixed-charge and polarizable models.
    Chen B; Siepmann JI; Klein ML
    J Phys Chem A; 2005 Feb; 109(6):1137-45. PubMed ID: 16833423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.