These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 1904540)

  • 1. Modular recognition of 5-base-pair DNA sequence motifs by human heat shock transcription factor.
    Cunniff NF; Wagner J; Morgan WD
    Mol Cell Biol; 1991 Jul; 11(7):3504-14. PubMed ID: 1904540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of heat shock element recognition by saturation mutagenesis of the human HSP70.1 gene promoter.
    Cunniff NF; Morgan WD
    J Biol Chem; 1993 Apr; 268(11):8317-24. PubMed ID: 8463341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mouse heat shock transcription factors 1 and 2 prefer a trimeric binding site but interact differently with the HSP70 heat shock element.
    Kroeger PE; Sarge KD; Morimoto RI
    Mol Cell Biol; 1993 Jun; 13(6):3370-83. PubMed ID: 8497256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel non-conventional heat shock element regulates expression of MDJ1 encoding a DnaJ homolog in Saccharomyces cerevisiae.
    Tachibana T; Astumi S; Shioda R; Ueno M; Uritani M; Ushimaru T
    J Biol Chem; 2002 Jun; 277(25):22140-6. PubMed ID: 11940587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat shock-induced interactions of heat shock transcription factor and the human hsp70 promoter examined by in vivo footprinting.
    Abravaya K; Phillips B; Morimoto RI
    Mol Cell Biol; 1991 Jan; 11(1):586-92. PubMed ID: 1986252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooperative binding of Drosophila heat shock factor to arrays of a conserved 5 bp unit.
    Xiao H; Perisic O; Lis JT
    Cell; 1991 Feb; 64(3):585-93. PubMed ID: 1899357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. (CT)n (GA)n repeats and heat shock elements have distinct roles in chromatin structure and transcriptional activation of the Drosophila hsp26 gene.
    Lu Q; Wallrath LL; Granok H; Elgin SC
    Mol Cell Biol; 1993 May; 13(5):2802-14. PubMed ID: 8474442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fine structure analyses of the Drosophila and Saccharomyces heat shock factor--heat shock element interactions.
    Fernandes M; Xiao H; Lis JT
    Nucleic Acids Res; 1994 Jan; 22(2):167-73. PubMed ID: 8121800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperative binding of heat shock transcription factor to the Hsp70 promoter in vivo and in vitro.
    Amin J; Fernandez M; Ananthan J; Lis JT; Voellmy R
    J Biol Chem; 1994 Feb; 269(7):4804-11. PubMed ID: 8106450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in DNA sequence recognition by the heat-shock factors of Drosophila melanogaster and the parasitic helminth Schistosoma mansoni.
    Levy-Holtzman R; Clos J; Schechter I
    Biochim Biophys Acta; 1995 Oct; 1264(1):134-40. PubMed ID: 7578247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of the activation of heat shock factor in vivo and in vitro by flavonoids.
    Hosokawa N; Hirayoshi K; Kudo H; Takechi H; Aoike A; Kawai K; Nagata K
    Mol Cell Biol; 1992 Aug; 12(8):3490-8. PubMed ID: 1321338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attenuation of the heat shock response in HeLa cells is mediated by the release of bound heat shock transcription factor and is modulated by changes in growth and in heat shock temperatures.
    Abravaya K; Phillips B; Morimoto RI
    Genes Dev; 1991 Nov; 5(11):2117-27. PubMed ID: 1936996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Examination of the DNA sequence-specific binding properties of heat shock transcription factor in Xenopus laevis embryos.
    Karn H; Ovsenek N; Heikkila JJ
    Biochem Cell Biol; 1992; 70(10-11):1006-13. PubMed ID: 1297327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae.
    Yamamoto A; Mizukami Y; Sakurai H
    J Biol Chem; 2005 Mar; 280(12):11911-9. PubMed ID: 15647283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential recognition of heat shock elements by members of the heat shock transcription factor family.
    Yamamoto N; Takemori Y; Sakurai M; Sugiyama K; Sakurai H
    FEBS J; 2009 Apr; 276(7):1962-74. PubMed ID: 19250318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two transcriptional activators, CCAAT-box-binding transcription factor and heat shock transcription factor, interact with a human hsp70 gene promoter.
    Morgan WD; Williams GT; Morimoto RI; Greene J; Kingston RE; Tjian R
    Mol Cell Biol; 1987 Mar; 7(3):1129-38. PubMed ID: 3561411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Germline transformation used to define key features of heat-shock response elements.
    Xiao H; Lis JT
    Science; 1988 Mar; 239(4844):1139-42. PubMed ID: 3125608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and regulation of the SSA4 HSP70 gene of Saccharomyces cerevisiae.
    Boorstein WR; Craig EA
    J Biol Chem; 1990 Nov; 265(31):18912-21. PubMed ID: 2121731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A distal heat shock element promotes the rapid response to heat shock of the HSP26 gene in the yeast Saccharomyces cerevisiae.
    Chen J; Pederson DS
    J Biol Chem; 1993 Apr; 268(10):7442-8. PubMed ID: 8463277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a nuclear protein that constitutively recognizes the sequence containing a heat-shock element. Its binding properties and possible function modulating heat-shock induction of the rat heme oxygenase gene.
    Okinaga S; Shibahara S
    Eur J Biochem; 1993 Feb; 212(1):167-75. PubMed ID: 8444154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.