These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. The Hindmarsh-Rose neuron model: bifurcation analysis and piecewise-linear approximations. Storace M; Linaro D; de Lange E Chaos; 2008 Sep; 18(3):033128. PubMed ID: 19045466 [TBL] [Abstract][Full Text] [Related]
6. Stability diagram for the forced Kuramoto model. Childs LM; Strogatz SH Chaos; 2008 Dec; 18(4):043128. PubMed ID: 19123638 [TBL] [Abstract][Full Text] [Related]
7. Noise-reversed stability of Turing patterns versus Hopf oscillations near codimension-two conditions. Alonso S; Sagués F Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):035203. PubMed ID: 19905167 [TBL] [Abstract][Full Text] [Related]
8. Coherence resonance induced by colored noise near Hopf bifurcation. Ma J; Xiao T; Hou Z; Xin H Chaos; 2008 Dec; 18(4):043116. PubMed ID: 19123626 [TBL] [Abstract][Full Text] [Related]
9. Stability and multiple bifurcations of a damped harmonic oscillator with delayed feedback near zero eigenvalue singularity. Song Y; Zhang T; Tadé MO Chaos; 2008 Dec; 18(4):043113. PubMed ID: 19123623 [TBL] [Abstract][Full Text] [Related]
10. Universal occurrence of the phase-flip bifurcation in time-delay coupled systems. Prasad A; Dana SK; Karnatak R; Kurths J; Blasius B; Ramaswamy R Chaos; 2008 Jun; 18(2):023111. PubMed ID: 18601478 [TBL] [Abstract][Full Text] [Related]
11. On the bifurcation of species. Bees MA; Coullet PH; Spiegel EA Chaos; 2008 Dec; 18(4):043114. PubMed ID: 19123624 [TBL] [Abstract][Full Text] [Related]
12. Bifurcation analysis of a normal form for excitable media: are stable dynamical alternans on a ring possible? Gottwald GA Chaos; 2008 Mar; 18(1):013129. PubMed ID: 18377080 [TBL] [Abstract][Full Text] [Related]
13. Multistability and arithmetically period-adding bifurcations in piecewise smooth dynamical systems. Do Y; Lai YC Chaos; 2008 Dec; 18(4):043107. PubMed ID: 19123617 [TBL] [Abstract][Full Text] [Related]
14. Homoclinic snaking near a codimension-two Turing-Hopf bifurcation point in the Brusselator model. Tzou JC; Ma YP; Bayliss A; Matkowsky BJ; Volpert VA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022908. PubMed ID: 23496592 [TBL] [Abstract][Full Text] [Related]
15. Complete periodic synchronization in coupled systems. Zou W; Zhan M Chaos; 2008 Dec; 18(4):043115. PubMed ID: 19123625 [TBL] [Abstract][Full Text] [Related]
16. Resonant forcing of nonlinear systems of differential equations. Gintautas V; Hübler AW Chaos; 2008 Sep; 18(3):033118. PubMed ID: 19045456 [TBL] [Abstract][Full Text] [Related]
17. Low dimensional behavior of large systems of globally coupled oscillators. Ott E; Antonsen TM Chaos; 2008 Sep; 18(3):037113. PubMed ID: 19045487 [TBL] [Abstract][Full Text] [Related]
18. Chaotic oscillations in a map-based model of neural activity. Courbage M; Nekorkin VI; Vdovin LV Chaos; 2007 Dec; 17(4):043109. PubMed ID: 18163773 [TBL] [Abstract][Full Text] [Related]
19. Controlling the onset of Hopf bifurcation in the Hodgkin-Huxley model. Xie Y; Chen L; Kang YM; Aihara K Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061921. PubMed ID: 18643314 [TBL] [Abstract][Full Text] [Related]
20. Hopf bifurcation control in a congestion control model via dynamic delayed feedback. Guo S; Feng G; Liao X; Liu Q Chaos; 2008 Dec; 18(4):043104. PubMed ID: 19123614 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]