These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 19045534)

  • 1. The force attenuation provided by hip protectors depends on impact velocity, pelvic size, and soft tissue stiffness.
    Laing AC; Robinovitch SN
    J Biomech Eng; 2008 Dec; 130(6):061005. PubMed ID: 19045534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of positioning on the biomechanical performance of soft shell hip protectors.
    Choi WJ; Hoffer JA; Robinovitch SN
    J Biomech; 2010 Mar; 43(5):818-25. PubMed ID: 20018287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical comparison of hard and soft hip protectors, and the influence of soft tissue.
    van Schoor NM; van der Veen AJ; Schaap LA; Smit TH; Lips P
    Bone; 2006 Aug; 39(2):401-7. PubMed ID: 16546458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a new design of hip protectors using finite element analysis and mechanical tests.
    Schmid Daners M; Wullschleger L; Derler S; Schmitt KU
    Med Eng Phys; 2008 Nov; 30(9):1186-92. PubMed ID: 18424166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy-shunting external hip protector attenuates the peak femoral impact force below the theoretical fracture threshold: an in vitro biomechanical study under falling conditions of the elderly.
    Parkkari J; Kannus P; Heikkilä J; Poutala J; Sievänen H; Vuori I
    J Bone Miner Res; 1995 Oct; 10(10):1437-42. PubMed ID: 8686498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of force attenuation properties of four different hip protectors under simulated falling conditions in the elderly: an in vitro biomechanical study.
    Kannus P; Parkkari J; Poutala J
    Bone; 1999 Aug; 25(2):229-35. PubMed ID: 10456390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anatomical hip model for the mechanical testing of hip protectors.
    Derler S; Spierings AB; Schmitt KU
    Med Eng Phys; 2005 Jul; 27(6):475-85. PubMed ID: 15990064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low stiffness floors can attenuate fall-related femoral impact forces by up to 50% without substantially impairing balance in older women.
    Laing AC; Robinovitch SN
    Accid Anal Prev; 2009 May; 41(3):642-50. PubMed ID: 19393817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing the effective stiffness of the pelvis during sideways falls on the hip.
    Laing AC; Robinovitch SN
    J Biomech; 2010 Jul; 43(10):1898-904. PubMed ID: 20398905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of impact force attenuation by various combinations of hip protector and flooring material using a simplified fall-impact simulation device.
    Li N; Tsushima E; Tsushima H
    J Biomech; 2013 Apr; 46(6):1140-6. PubMed ID: 23411114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of type of hip protector and resident characteristics on adherence to use of hip protectors in nursing and residential homes--an exploratory study.
    O'Halloran PD; Murray LJ; Cran GW; Dunlop L; Kernohan G; Beringer TR
    Int J Nurs Stud; 2005 May; 42(4):387-97. PubMed ID: 15847901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of hip protectors, falling angle and body mass index on pressure distribution over the hip during simulated falls.
    Choi WJ; Hoffer JA; Robinovitch SN
    Clin Biomech (Bristol); 2010 Jan; 25(1):63-9. PubMed ID: 19766363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of hip fracture in sideways fall using a 3D finite element model of pelvis-femur-soft tissue complex with simplified representation of whole body.
    Majumder S; Roychowdhury A; Pal S
    Med Eng Phys; 2007 Dec; 29(10):1167-78. PubMed ID: 17270483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force attenuation in trochanteric soft tissues during impact from a fall.
    Robinovitch SN; McMahon TA; Hayes WC
    J Orthop Res; 1995 Nov; 13(6):956-62. PubMed ID: 8544034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of compliant flooring on impact force during falls on the hip.
    Laing AC; Tootoonchi I; Hulme PA; Robinovitch SN
    J Orthop Res; 2006 Jul; 24(7):1405-11. PubMed ID: 16705716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of pad geometry and material properties on the biomechanical effectiveness of 26 commercially available hip protectors.
    Laing AC; Feldman F; Jalili M; Tsai CM; Robinovitch SN
    J Biomech; 2011 Oct; 44(15):2627-35. PubMed ID: 21899845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical testing of different hip protectors according to a European Standard.
    Holzer LA; von Skrbensky G; Holzer G
    Injury; 2009 Nov; 40(11):1172-5. PubMed ID: 19524913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of soft shell hip protectors on pressure distribution to the hip during sideways falls.
    Laing AC; Robinovitch SN
    Osteoporos Int; 2008 Jul; 19(7):1067-75. PubMed ID: 18338098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical study of an anthropometrically designed hip protector for older chinese women.
    Sze PC; Cheung WH; Qin L; Tam KF; Ng WK; Leung KS
    Geriatr Nurs; 2008; 29(1):64-9. PubMed ID: 18267179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hip protectors: recommendations for biomechanical testing--an international consensus statement (part I).
    Robinovitch SN; Evans SL; Minns J; Laing AC; Kannus P; Cripton PA; Derler S; Birge SJ; Plant D; Cameron ID; Kiel DP; Howland J; Khan K; Lauritzen JB
    Osteoporos Int; 2009 Dec; 20(12):1977-88. PubMed ID: 19806286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.