BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 19045535)

  • 1. Three-dimensional modeling and computational analysis of the human cornea considering distributed collagen fibril orientations.
    Pandolfi A; Holzapfel GA
    J Biomech Eng; 2008 Dec; 130(6):061006. PubMed ID: 19045535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational remodeling approach to predict the physiological architecture of the collagen fibril network in corneo-scleral shells.
    Grytz R; Meschke G
    Biomech Model Mechanobiol; 2010 Apr; 9(2):225-35. PubMed ID: 19802726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stress related collagen ultrastructure in human aortic valves--implications for tissue engineering.
    Balguid A; Driessen NJ; Mol A; Schmitz JP; Verheyen F; Bouten CV; Baaijens FP
    J Biomech; 2008 Aug; 41(12):2612-7. PubMed ID: 18701107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet.
    Liao J; Yang L; Grashow J; Sacks MS
    J Biomech Eng; 2007 Feb; 129(1):78-87. PubMed ID: 17227101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new model to simulate the elastic properties of mineralized collagen fibril.
    Yuan F; Stock SR; Haeffner DR; Almer JD; Dunand DC; Brinson LC
    Biomech Model Mechanobiol; 2011 Apr; 10(2):147-60. PubMed ID: 20521160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D collagen orientation study of the human cornea using X-ray diffraction and femtosecond laser technology.
    Abahussin M; Hayes S; Knox Cartwright NE; Kamma-Lorger CS; Khan Y; Marshall J; Meek KM
    Invest Ophthalmol Vis Sci; 2009 Nov; 50(11):5159-64. PubMed ID: 19516010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mechanical model of the cornea considering the crimping morphology of collagen fibrils.
    Liu X; Wang L; Ji J; Yao W; Wei W; Fan J; Joshi S; Li D; Fan Y
    Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2739-46. PubMed ID: 24692124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model.
    Julkunen P; Kiviranta P; Wilson W; Jurvelin JS; Korhonen RK
    J Biomech; 2007; 40(8):1862-70. PubMed ID: 17052722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model for the human cornea: constitutive formulation and numerical analysis.
    Pandolfi A; Manganiello F
    Biomech Model Mechanobiol; 2006 Nov; 5(4):237-46. PubMed ID: 16444515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical model of human cornea based on stromal microstructure.
    Studer H; Larrea X; Riedwyl H; Büchler P
    J Biomech; 2010 Mar; 43(5):836-42. PubMed ID: 20006338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element based mechanical models of the cornea for pressure and indenter loading.
    Vito RP; Carnell PH
    Refract Corneal Surg; 1992; 8(2):146-51. PubMed ID: 1591210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical modeling of radial, astigmatic, and hexagonal keratotomy.
    Pinsky PM; Datye DV
    Refract Corneal Surg; 1992; 8(2):164-72. PubMed ID: 1591212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of multiple loading scenarios for the identification of material coefficients of the human cornea.
    Studer H; Riedwyl H; Büchler P
    Comput Methods Biomech Biomed Engin; 2012; 15(1):93-9. PubMed ID: 21749272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lower- and higher-order aberrations predicted by an optomechanical model of arcuate keratotomy for astigmatism.
    Navarro R; Palos F; Lanchares E; Calvo B; Cristóbal JA
    J Cataract Refract Surg; 2009 Jan; 35(1):158-65. PubMed ID: 19101439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A biphasic viscohyperelastic fibril-reinforced model for articular cartilage: formulation and comparison with experimental data.
    García JJ; Cortés DH
    J Biomech; 2007; 40(8):1737-44. PubMed ID: 17014853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element 3D modeling of mechanical behavior of mineralized collagen microfibrils.
    Barkaoui A; Hambli R
    J Appl Biomater Biomech; 2011; 9(3):199-205. PubMed ID: 22139755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physically based 3D finite element model of a single mineralized collagen microfibril.
    Hambli R; Barkaoui A
    J Theor Biol; 2012 May; 301():28-41. PubMed ID: 22365909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of constitutive models of arterial layers with distributed collagen fibre orientations.
    Skacel P; Bursa J
    Acta Bioeng Biomech; 2014; 16(3):47-58. PubMed ID: 25308192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The collagen fibril architecture in the lamina cribrosa and peripapillary sclera predicted by a computational remodeling approach.
    Grytz R; Meschke G; Jonas JB
    Biomech Model Mechanobiol; 2011 Jun; 10(3):371-82. PubMed ID: 20628781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osmotic loading of articular cartilage modulates cell deformations along primary collagen fibril directions.
    Korhonen RK; Han SK; Herzog W
    J Biomech; 2010 Mar; 43(4):783-7. PubMed ID: 19892355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.