BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 19045544)

  • 21. Mechanical compression-induced pressure sores in rat hindlimb: muscle stiffness, histology, and computational models.
    Linder-Ganz E; Gefen A
    J Appl Physiol (1985); 2004 Jun; 96(6):2034-49. PubMed ID: 14766784
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pressure-time cell death threshold for albino rat skeletal muscles as related to pressure sore biomechanics.
    Linder-Ganz E; Engelberg S; Scheinowitz M; Gefen A
    J Biomech; 2006; 39(14):2725-32. PubMed ID: 16199045
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Confocal microscopy-based three-dimensional cell-specific modeling for large deformation analyses in cellular mechanics.
    Slomka N; Gefen A
    J Biomech; 2010 Jun; 43(9):1806-16. PubMed ID: 20188374
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Compression-induced deep tissue injury examined with magnetic resonance imaging and histology.
    Stekelenburg A; Oomens CW; Strijkers GJ; Nicolay K; Bader DL
    J Appl Physiol (1985); 2006 Jun; 100(6):1946-54. PubMed ID: 16484364
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microstructural analysis of deformation-induced hypoxic damage in skeletal muscle.
    Ceelen KK; Oomens CW; Baaijens FP
    Biomech Model Mechanobiol; 2008 Aug; 7(4):277-84. PubMed ID: 17710456
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The importance of internal strain as opposed to interface pressure in the prevention of pressure related deep tissue injury.
    Oomens CW; Loerakker S; Bader DL
    J Tissue Viability; 2010 May; 19(2):35-42. PubMed ID: 20005716
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An integrated system for real-time detection of stiff masses with a single compression.
    Fahmy AS; Krieger A; Osman NF
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1286-93. PubMed ID: 16830933
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel constitutive model of skeletal muscle taking into account anisotropic damage.
    Ito D; Tanaka E; Yamamoto S
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):85-93. PubMed ID: 19878905
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Compression Intensity Index: a practical anatomical estimate of the biomechanical risk for a deep tissue injury.
    Gefen A
    Technol Health Care; 2008; 16(2):141-9. PubMed ID: 18487860
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mixed experimental and numerical approach for characterizing the biomechanical response of the human leg under elastic compression.
    Avril S; Bouten L; Dubuis L; Drapier S; Pouget JF
    J Biomech Eng; 2010 Mar; 132(3):031006. PubMed ID: 20459194
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of pressure and shear on capillary closure in the microstructure of skeletal muscles.
    Linder-Ganz E; Gefen A
    Ann Biomed Eng; 2007 Dec; 35(12):2095-107. PubMed ID: 17899378
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effects of deformation, ischemia, and reperfusion on the development of muscle damage during prolonged loading.
    Loerakker S; Manders E; Strijkers GJ; Nicolay K; Baaijens FP; Bader DL; Oomens CW
    J Appl Physiol (1985); 2011 Oct; 111(4):1168-77. PubMed ID: 21757578
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strain-time cell-death threshold for skeletal muscle in a tissue-engineered model system for deep tissue injury.
    Gefen A; van Nierop B; Bader DL; Oomens CW
    J Biomech; 2008; 41(9):2003-12. PubMed ID: 18501912
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantifying pressure sore-related muscle damage using high-resolution MRI.
    Bosboom EM; Bouten CV; Oomens CW; Baaijens FP; Nicolay K
    J Appl Physiol (1985); 2003 Dec; 95(6):2235-40. PubMed ID: 12819217
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The false premise in measuring body-support interface pressures for preventing serious pressure ulcers.
    Gefen A; Levine J
    J Med Eng Technol; 2007; 31(5):375-80. PubMed ID: 17701783
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MRI-based inverse finite element approach for the mechanical assessment of patellar articular cartilage from static compression test.
    Knecht S; Luechinger R; Boesiger P; Stüssi E
    Biomed Tech (Berl); 2008 Dec; 53(6):285-91. PubMed ID: 19037871
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distribution of internal strains around bony prominences in pigs.
    Solis LR; Liggins AB; Seres P; Uwiera RR; Poppe NR; Pehowich E; Thompson RB; Mushahwar VK
    Ann Biomed Eng; 2012 Aug; 40(8):1721-39. PubMed ID: 22399330
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An inverse problem solution for measuring the elastic modulus of intact ex vivo breast tissue tumours.
    Samani A; Plewes D
    Phys Med Biol; 2007 Mar; 52(5):1247-60. PubMed ID: 17301452
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stress relaxation of porcine gluteus muscle subjected to sudden transverse deformation as related to pressure sore modeling.
    Palevski A; Glaich I; Portnoy S; Linder-Ganz E; Gefen A
    J Biomech Eng; 2006 Oct; 128(5):782-7. PubMed ID: 16995767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Which factors influence the ability of a computational model to predict the in vivo deformation behaviour of skeletal muscle?
    Loerakker S; Bader DL; Baaijens FP; Oomens CW
    Comput Methods Biomech Biomed Engin; 2013; 16(3):338-45. PubMed ID: 22300425
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.