BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 19045638)

  • 1. A method for approximating acoustic-field-amplitude uncertainty caused by environmental uncertainties.
    James KR; Dowling DR
    J Acoust Soc Am; 2008 Sep; 124(3):1465-76. PubMed ID: 19045638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of focalization and marginalization for Bayesian tracking in an uncertain ocean environment.
    Dosso SE; Wilmut MJ
    J Acoust Soc Am; 2009 Feb; 125(2):717-22. PubMed ID: 19206849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pekeris waveguide comparisons of methods for predicting acoustic field amplitude uncertainty caused by a spatially uniform environmental uncertainty (L).
    James KR; Dowling DR
    J Acoust Soc Am; 2011 Feb; 129(2):589-92. PubMed ID: 21361416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mode-based technique for estimating uncertainty in range-averaged transmission loss results from underwater acoustic calculations.
    Zingarelli RA
    J Acoust Soc Am; 2008 Oct; 124(4):EL218-22. PubMed ID: 19062789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct measurement of sediment sound speed in Shallow Water '06.
    Yang J; Tang D; Williams KL
    J Acoust Soc Am; 2008 Sep; 124(3):EL116-21. PubMed ID: 19045552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-frequency sound speed and attenuation in sandy seabottom from long-range broadband acoustic measurements.
    Wan L; Zhou JX; Rogers PH
    J Acoust Soc Am; 2010 Aug; 128(2):578-89. PubMed ID: 20707427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of ocean sound speed uncertainty on matched-field geoacoustic inversion.
    Huang CF; Gerstoft P; Hodgkiss WS
    J Acoust Soc Am; 2008 Jun; 123(6):EL162-8. PubMed ID: 18537304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian source tracking via focalization and marginalization in an uncertain Mediterranean Sea environment.
    Dosso SE; Wilmut MJ; Nielsen PL
    J Acoust Soc Am; 2010 Jul; 128(1):66-74. PubMed ID: 20649202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic mode coupling induced by shallow water nonlinear internal waves: sensitivity to environmental conditions and space-time scales of internal waves.
    Colosi JA
    J Acoust Soc Am; 2008 Sep; 124(3):1452-64. PubMed ID: 19045637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sonar signal processing using probabilistic signal and ocean environmental models.
    Culver RL; Camin HJ
    J Acoust Soc Am; 2008 Dec; 124(6):3619-31. PubMed ID: 19206791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Full wave-field reflection coefficient inversion.
    Dettmer J; Dosso SE; Holland CW
    J Acoust Soc Am; 2007 Dec; 122(6):3327-37. PubMed ID: 18247743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of sound focusing and defocusing due to propagating nonlinear internal waves.
    Luo J; Badiey M; Karjadi EA; Katsnelson B; Tskhoidze A; Lynch JF; Moum JN
    J Acoust Soc Am; 2008 Sep; 124(3):EL66-72. PubMed ID: 19045564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian multiple-source localization in an uncertain ocean environment.
    Dosso SE; Wilmut MJ
    J Acoust Soc Am; 2011 Jun; 129(6):3577-89. PubMed ID: 21682383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A stochastic response surface formulation of acoustic propagation through an uncertain ocean waveguide environment.
    Finette S
    J Acoust Soc Am; 2009 Nov; 126(5):2242-7. PubMed ID: 19894805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observed limiting cases of horizontal field coherence and array performance in a time-varying internal wavefield.
    Collis JM; Duda TF; Lynch JF; DeFerrari HA
    J Acoust Soc Am; 2008 Sep; 124(3):EL97-103. PubMed ID: 19045569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low probability of detection underwater acoustic communications using direct-sequence spread spectrum.
    Yang TC; Yang WB
    J Acoust Soc Am; 2008 Dec; 124(6):3632-47. PubMed ID: 19206792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mid-frequency sound propagation through internal waves at short range with synoptic oceanographic observations.
    Rouseff D; Tang D; Williams KL; Wang Z; Moum JN
    J Acoust Soc Am; 2008 Sep; 124(3):EL73-7. PubMed ID: 19045565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmission loss measurements and geoacoustic sensitivity modeling at 1.2 kHz.
    Pecknold SP; Masui KW; Hines PC
    J Acoust Soc Am; 2008 Sep; 124(3):EL110-5. PubMed ID: 19045551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intensity fluctuations of midfrequency sound signals passing through moving nonlinear internal waves.
    Katsnelson B; Grigorev V; Lynch JF
    J Acoust Soc Am; 2008 Sep; 124(3):EL78-84. PubMed ID: 19045566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mid-frequency acoustic propagation in shallow water on the New Jersey shelf. II. Intensity fluctuation.
    Tang D; Henyey FS; Wang Z; Williams KL; Rouseff D; Dahl PH; Quijano J; Choi JW
    J Acoust Soc Am; 2008 Sep; 124(3):EL91-6. PubMed ID: 19045568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.