BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 19045652)

  • 1. Effect of the cochlear microphonic on the limiting frequency of the mammalian ear.
    Iwasa KH; Sul B
    J Acoust Soc Am; 2008 Sep; 124(3):1607-12. PubMed ID: 19045652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-frequency motility of outer hair cells and the cochlear amplifier.
    Dallos P; Evans BN
    Science; 1995 Mar; 267(5206):2006-9. PubMed ID: 7701325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Limiting frequency of the cochlear amplifier based on electromotility of outer hair cells.
    Ospeck M; Dong XX; Iwasa KH
    Biophys J; 2003 Feb; 84(2 Pt 1):739-49. PubMed ID: 12547758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Outer hair cell active force generation in the cochlear environment.
    Liao Z; Feng S; Popel AS; Brownell WE; Spector AA
    J Acoust Soc Am; 2007 Oct; 122(4):2215-25. PubMed ID: 17902857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interplay between active hair bundle motility and electromotility in the cochlea.
    O Maoiléidigh D; Jülicher F
    J Acoust Soc Am; 2010 Sep; 128(3):1175-90. PubMed ID: 20815454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loud sound-induced changes in cochlear mechanics.
    Fridberger A; Zheng J; Parthasarathi A; Ren T; Nuttall A
    J Neurophysiol; 2002 Nov; 88(5):2341-8. PubMed ID: 12424275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cochlear transducer operating point adaptation.
    Zou Y; Zheng J; Ren T; Nuttall A
    J Acoust Soc Am; 2006 Apr; 119(4):2232-41. PubMed ID: 16642838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro.
    Chan DK; Hudspeth AJ
    Nat Neurosci; 2005 Feb; 8(2):149-55. PubMed ID: 15643426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of modulation of basilar membrane position on the cochlear microphonic.
    Pierson M; Møller A
    Hear Res; 1980 Mar; 2(2):151-62. PubMed ID: 7364670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brief report: the cochlear microphonic as an indication of outer hair cell function.
    Withnell RH
    Ear Hear; 2001 Feb; 22(1):75-7. PubMed ID: 11271978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlorpromazine inhibits cochlear function in guinea pigs.
    Oghalai JS
    Hear Res; 2004 Dec; 198(1-2):59-68. PubMed ID: 15567603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large endolymphatic potentials from low-frequency and infrasonic tones in the guinea pig.
    Salt AN; Lichtenhan JT; Gill RM; Hartsock JJ
    J Acoust Soc Am; 2013 Mar; 133(3):1561-71. PubMed ID: 23464026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-frequency characteristics of intracellularly recorded receptor potentials in guinea-pig cochlear hair cells.
    Russell IJ; Sellick PM
    J Physiol; 1983 May; 338():179-206. PubMed ID: 6875955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model of cochlear micromechanics.
    Fukazawa T
    Hear Res; 1997 Nov; 113(1-2):182-90. PubMed ID: 9387997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-frequency electromotile responses in the cochlea.
    Grosh K; Zheng J; Zou Y; de Boer E; Nuttall AL
    J Acoust Soc Am; 2004 May; 115(5 Pt 1):2178-84. PubMed ID: 15139629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model of cochlear mechanics with outer hair cell motility.
    Neely ST
    J Acoust Soc Am; 1993 Jul; 94(1):137-46. PubMed ID: 8354757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of transducer operating point on distortion generation in the cochlea.
    Sirjani DB; Salt AN; Gill RM; Hale SA
    J Acoust Soc Am; 2004 Mar; 115(3):1219-29. PubMed ID: 15058343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A parametric study of cochlear input impedance.
    Puria S; Allen JB
    J Acoust Soc Am; 1991 Jan; 89(1):287-309. PubMed ID: 2002170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of outer hair cell activity in a one-dimensional cochlear model.
    Cohen A; Furst M
    J Acoust Soc Am; 2004 May; 115(5 Pt 1):2185-92. PubMed ID: 15139630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reticular lamina and basilar membrane vibrations in living mouse cochleae.
    Ren T; He W; Kemp D
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9910-5. PubMed ID: 27516544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.