These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

507 related articles for article (PubMed ID: 19045669)

  • 1. Direct methods for characterizing high-intensity focused ultrasound transducers using acoustic streaming.
    Myers MR; Hariharan P; Banerjee RK
    J Acoust Soc Am; 2008 Sep; 124(3):1790-802. PubMed ID: 19045669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of high intensity focused ultrasound transducers using acoustic streaming.
    Hariharan P; Myers MR; Robinson RA; Maruvada SH; Sliwa J; Banerjee RK
    J Acoust Soc Am; 2008 Mar; 123(3):1706-19. PubMed ID: 18345858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a fiber-optic displacement sensor for measurements in high-intensity focused ultrasound fields.
    Haller J; Wilkens V; Jenderka KV; Koch C
    J Acoust Soc Am; 2011 Jun; 129(6):3676-81. PubMed ID: 21682392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental verification of a two-sensor acoustic intensity measurement in lossy ducts.
    Biwa T; Tashiro Y; Nomura H; Ueda Y; Yazaki T
    J Acoust Soc Am; 2008 Sep; 124(3):1584-1590. PubMed ID: 19045650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow patterns and transport in Rayleigh surface acoustic wave streaming: combined finite element method and raytracing numerics versus experiments.
    Frommelt T; Gogel D; Kostur M; Talkner P; Hänggi P; Wixforth A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2298-305. PubMed ID: 18986877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a miniaturized piezoelectric ultrasonic transducer.
    Li T; Chen Y; Ma J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):649-59. PubMed ID: 19411223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust passive range estimation using the waveguide invariant.
    Cockrell KL; Schmidt H
    J Acoust Soc Am; 2010 May; 127(5):2780-9. PubMed ID: 21117727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of piezoelectric transducers with combined pseudospectral and finite-difference methods.
    Filoux E; Callé S; Certon D; Lethiecq M; Levassort F
    J Acoust Soc Am; 2008 Jun; 123(6):4165-73. PubMed ID: 18537368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental investigation of acoustic streaming in a cylindrical wave guide up to high streaming Reynolds numbers.
    Reyt I; Bailliet H; Valière JC
    J Acoust Soc Am; 2014 Jan; 135(1):27-37. PubMed ID: 24437742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A finite element model for simulating acoustic streaming in cystic breast lesions with experimental validation.
    Nightingale KR; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):201-14. PubMed ID: 18238532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-dimensional transport equation models for sound energy propagation in long spaces: simulations and experiments.
    Jing Y; Xiang N
    J Acoust Soc Am; 2010 Apr; 127(4):2323-31. PubMed ID: 20370014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extension of deconvolution algorithms for the mapping of moving acoustic sources.
    Fleury V; Bulté J
    J Acoust Soc Am; 2011 Mar; 129(3):1417-28. PubMed ID: 21428506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic ship signature measurements by cross-correlation method.
    Fillinger L; Sutin A; Sedunov A
    J Acoust Soc Am; 2011 Feb; 129(2):774-8. PubMed ID: 21361436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast acoustic streaming in standing waves: generation of an additional outer streaming cell.
    Reyt I; Daru V; Bailliet H; Moreau S; Valière JC; Baltean-Carlès D; Weisman C
    J Acoust Soc Am; 2013 Sep; 134(3):1791-801. PubMed ID: 23967913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lanczos iterated time-reversal.
    Oberai AA; Feijóo GR; Barbone PE
    J Acoust Soc Am; 2009 Feb; 125(2):EL70. PubMed ID: 19206835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eddy-current non-inertial displacement sensing for underwater infrasound measurements.
    Donskoy DM; Cray BA
    J Acoust Soc Am; 2011 Jun; 129(6):EL254-9. PubMed ID: 21682361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fourier continuation methods for high-fidelity simulation of nonlinear acoustic beams.
    Albin N; Bruno OP; Cheung TY; Cleveland RO
    J Acoust Soc Am; 2012 Oct; 132(4):2371-87. PubMed ID: 23039433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical framework for quantitatively estimating ultrasound beam intensities using infrared thermography.
    Myers MR; Giridhar D
    J Acoust Soc Am; 2011 Jun; 129(6):4073-83. PubMed ID: 21682428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geoacoustic inversion with two source-receiver arrays in shallow water.
    Sukhovich A; Roux P; Wathelet M
    J Acoust Soc Am; 2010 Aug; 128(2):702-10. PubMed ID: 20707440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-input multi-output underwater communications over sparse and frequency modulated acoustic channels.
    Ling J; Zhao K; Li J; Nordenvaad ML
    J Acoust Soc Am; 2011 Jul; 130(1):249-62. PubMed ID: 21786895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.