These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 19045838)

  • 1. Nanoelectronic interface for lab-on-a-chip devices.
    Abraham JK; Yoon H; Chintakuntla R; Kavdia M; Varadan VK
    IET Nanobiotechnol; 2008 Sep; 2(3):55-61. PubMed ID: 19045838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon nanotubes integrated in electrically insulated channels for lab-on-a-chip applications.
    Mogensen KB; Gangloff L; Boggild P; Teo KB; Milne WI; Kutter JP
    Nanotechnology; 2009 Mar; 20(9):095503. PubMed ID: 19417490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic system for planar patch clamp electrode arrays.
    Li X; Klemic KG; Reed MA; Sigworth FJ
    Nano Lett; 2006 Apr; 6(4):815-9. PubMed ID: 16608289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field-programmable lab-on-a-chip based on microelectrode dot array architecture.
    Wang G; Teng D; Lai YT; Lu YW; Ho Y; Lee CY
    IET Nanobiotechnol; 2014 Sep; 8(3):163-71. PubMed ID: 25082225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constraining the connectivity of neuronal networks cultured on microelectrode arrays with microfluidic techniques: a step towards neuron-based functional chips.
    Morin F; Nishimura N; Griscom L; Lepioufle B; Fujita H; Takamura Y; Tamiya E
    Biosens Bioelectron; 2006 Jan; 21(7):1093-100. PubMed ID: 15961304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Flexible print circuit technology application in biomedical engineering].
    Jiang L; Cao Y; Zheng X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Jun; 30(3):670-4. PubMed ID: 23865340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro/Nanofluidic device for single-cell-based assay.
    Yun KS; Yoon E
    Biomed Microdevices; 2005 Mar; 7(1):35-40. PubMed ID: 15834518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrohydrodynamic jet processing: an advanced electric-field-driven jetting phenomenon for processing living cells.
    Jayasinghe SN; Qureshi AN; Eagles PA
    Small; 2006 Feb; 2(2):216-9. PubMed ID: 17193023
    [No Abstract]   [Full Text] [Related]  

  • 9. Dynamic control of extracellular environment in in vitro neural recording systems.
    Pearce TM; Williams JJ; Kruzel SP; Gidden MJ; Williams JC
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):207-12. PubMed ID: 16003901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heteronanojunctions with atomic size control using a lab-on-chip electrochemical approach with integrated microfluidics.
    Lunca Popa P; Dalmas G; Faramarzi V; Dayen JF; Majjad H; Kemp NT; Doudin B
    Nanotechnology; 2011 May; 22(21):215302. PubMed ID: 21451221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Establishment of a microcarrier culture system with serial sub-cultivation for functionally active human endothelial cells.
    Tashiro S; Tsumoto K; Sano E
    J Biotechnol; 2012 Aug; 160(3-4):202-13. PubMed ID: 22465290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BioMEA: a versatile high-density 3D microelectrode array system using integrated electronics.
    Charvet G; Rousseau L; Billoint O; Gharbi S; Rostaing JP; Joucla S; Trevisiol M; Bourgerette A; Chauvet P; Moulin C; Goy F; Mercier B; Colin M; Spirkovitch S; Fanet H; Meyrand P; Guillemaud R; Yvert B
    Biosens Bioelectron; 2010 Apr; 25(8):1889-96. PubMed ID: 20106652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NanoLiterBioReactor: long-term mammalian cell culture at nanofabricated scale.
    Prokop A; Prokop Z; Schaffer D; Kozlov E; Wikswo J; Cliffel D; Baudenbacher F
    Biomed Microdevices; 2004 Dec; 6(4):325-39. PubMed ID: 15548879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-free impedance detection of low levels of circulating endothelial progenitor cells for point-of-care diagnosis.
    Ng SY; Reboud J; Wang KY; Tang KC; Zhang L; Wong P; Moe KT; Shim W; Chen Y
    Biosens Bioelectron; 2010 Jan; 25(5):1095-101. PubMed ID: 19926471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidics/CMOS orthogonal capabilities for cell biology.
    Linder V; Koster S; Franks W; Kraus T; Verpoorte E; Heer F; Hierlemann A; de Rooij NF
    Biomed Microdevices; 2006 Jun; 8(2):159-66. PubMed ID: 16688575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated microelectrode array and microfluidics for temperature clamp of sensory neurons in culture.
    Pearce TM; Wilson JA; Oakes SG; Chiu SY; Williams JC
    Lab Chip; 2005 Jan; 5(1):97-101. PubMed ID: 15616746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrode microchamber for noninvasive perturbation of mammalian cells with nanosecond pulsed electric fields.
    Sun Y; Vernier PT; Behrend M; Marcu L; Gundersen MA
    IEEE Trans Nanobioscience; 2005 Dec; 4(4):277-83. PubMed ID: 16433293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel microfluidic microelectrode chip for a significantly enhanced monitoring of NPY-receptor activation in live mode.
    Zitzmann FD; Jahnke HG; Nitschke F; Beck-Sickinger AG; Abel B; Belder D; Robitzki AA
    Lab Chip; 2017 Dec; 17(24):4294-4302. PubMed ID: 29119176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidics integration of aperiodic plasmonic arrays for spatial-spectral optical detection.
    Lee SY; Walsh GF; Dal Negro L
    Opt Express; 2013 Feb; 21(4):4945-57. PubMed ID: 23482027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical interfacing between neurons and electronics via vertically integrated sub-4 microm-diameter silicon probe arrays fabricated by vapor-liquid-solid growth.
    Kawano T; Harimoto T; Ishihara A; Takei K; Kawashima T; Usui S; Ishida M
    Biosens Bioelectron; 2010 Mar; 25(7):1809-15. PubMed ID: 20089393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.