These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 19045908)

  • 21. Development of high field SQUID magnetometer for magnetization studies up to 7 T and temperatures in the range from 4.2 to 300 K.
    Nagendran R; Thirumurugan N; Chinnasamy N; Janawadkar MP; Sundar CS
    Rev Sci Instrum; 2011 Jan; 82(1):015109. PubMed ID: 21280860
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Magnetic measurements at pressures above 10 GPa in a miniature ceramic anvil cell for a superconducting quantum interference device magnetometer.
    Tateiwa N; Haga Y; Matsuda TD; Fisk Z
    Rev Sci Instrum; 2012 May; 83(5):053906. PubMed ID: 22667632
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lamellar magnetism in the haematite-ilmenite series as an explanation for strong remanent magnetization.
    Robinson P; Harrison RJ; McEnroe SA; Hargraves RB
    Nature; 2002 Aug; 418(6897):517-20. PubMed ID: 12152075
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Note: simultaneous measurements of magnetization and electrical transport signal by a reconstructed superconducting quantum interference device magnetometer.
    Wang HL; Yu XZ; Wang SL; Chen L; Zhao JH
    Rev Sci Instrum; 2013 Aug; 84(8):086103. PubMed ID: 24007123
    [TBL] [Abstract][Full Text] [Related]  

  • 25. X-ray magnetic spectroscopy at high pressure: performance of SPring-8 BL39XU.
    Kawamura N; Ishimatsu N; Maruyama H
    J Synchrotron Radiat; 2009 Nov; 16(Pt 6):730-6. PubMed ID: 19844006
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pressure study of monoclinic ReO2 up to 1.2 GPa using X-ray absorption spectroscopy and X-ray diffraction.
    Ferreira FF; Corrêa HP; Orlando MT; Passamai JL; Orlando CG; Cavalcante IP; Garcia F; Tamura E; Martinez LG; Rossi JL; de Melo FC
    J Synchrotron Radiat; 2009 Jan; 16(Pt 1):48-56. PubMed ID: 19096174
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Creating a high temperature environment at high pressure in a gas piston cylinder apparatus.
    Burnley PC; Getting IC
    Rev Sci Instrum; 2012 Jan; 83(1):014501. PubMed ID: 22299971
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Precise determination of the pressure distortion coefficient of new controlled-clearance piston-cylinders based on the Heydemann-Welch model.
    Kajikawa H; Ide K; Kobata T
    Rev Sci Instrum; 2009 Sep; 80(9):095101. PubMed ID: 19791958
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrochemical cell for in situ electrodeposition of magnetic thin films in a superconducting quantum interference device magnetometer.
    Topolovec S; Krenn H; Würschum R
    Rev Sci Instrum; 2015 Jun; 86(6):063903. PubMed ID: 26133846
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hall measurements to 40 kilobars under hydrostatic pressure in a piston-cylinder device.
    Lifshitz N; Maines RG
    Rev Sci Instrum; 1979 May; 50(5):608. PubMed ID: 18699560
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tiny adiabatic-demagnetization refrigerator for a commercial superconducting quantum interference device magnetometer.
    Sato TJ; Okuyama D; Kimura H
    Rev Sci Instrum; 2016 Dec; 87(12):123905. PubMed ID: 28040960
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tl(2)CO(3) at 3.56 GPa.
    Grzechnik A; Friese K
    Acta Crystallogr C; 2008 Aug; 64(Pt 8):i69-70. PubMed ID: 18682630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of the pressure coefficient of manganin and temperature evolution of pressure in piston-cylinder cells.
    Xiang L; Gati E; Bud'ko SL; Ribeiro RA; Ata A; Tutsch U; Lang M; Canfield PC
    Rev Sci Instrum; 2020 Sep; 91(9):095103. PubMed ID: 33003820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Four-probe electrical measurements with a liquid pressure medium in a diamond anvil cell.
    Jaramillo R; Feng Y; Rosenbaum TF
    Rev Sci Instrum; 2012 Oct; 83(10):103902. PubMed ID: 23126777
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interlaboratory Comparison of Magnetic Thin Film Measurements.
    da Silva FC; Wang CM; Pappas DP
    J Res Natl Inst Stand Technol; 2003; 108(2):125-34. PubMed ID: 27413599
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the design and implementation of a novel impedance chamber based variable temperature regulator at liquid helium temperatures.
    Nagendran R; Thirumurugan N; Chinnasamy N; Janawadkar MP; Sundar CS
    Rev Sci Instrum; 2010 Apr; 81(4):045112. PubMed ID: 20441373
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Indirect measurement of the magnetocaloric effect using a novel differential scanning calorimeter with magnetic field.
    Jeppesen S; Linderoth S; Pryds N; Kuhn LT; Jensen JB
    Rev Sci Instrum; 2008 Aug; 79(8):083901. PubMed ID: 19044358
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rotating sample magnetometer for cryogenic temperatures and high magnetic fields.
    Eisterer M; Hengstberger F; Voutsinas CS; Hörhager N; Sorta S; Hecher J; Weber HW
    Rev Sci Instrum; 2011 Jun; 82(6):063902. PubMed ID: 21721704
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Magnetic properties of synthetic eumelanin--preliminary results.
    Cano ME; Castañeda-Priego R; Gil-Villegas A; Sosa MA; Schio P; de Oliveira AJ; Chen F; Baffa O; Graeff CF
    Photochem Photobiol; 2008; 84(3):627-31. PubMed ID: 18282181
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Scanning magnetic microscope system utilizing a magneto-impedance sensor for a nondestructive diagnostic tool of geological samples.
    Uehara M; Nakamura N
    Rev Sci Instrum; 2007 Apr; 78(4):043708. PubMed ID: 17477671
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.