These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

598 related articles for article (PubMed ID: 19045928)

  • 61. A full body musculoskeletal model based on flexible multibody simulation approach utilised in bone strain analysis during human locomotion.
    Al Nazer R; Klodowski A; Rantalainen T; Heinonen A; Sievänen H; Mikkola A
    Comput Methods Biomech Biomed Engin; 2011 Jun; 14(6):573-9. PubMed ID: 21302163
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The mechanobiology of cancellous bone structural adaptation.
    Jacobs CR
    J Rehabil Res Dev; 2000; 37(2):209-16. PubMed ID: 10850827
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A topology optimization based model of bone adaptation.
    Rossi JM; Wendling-Mansuy S
    Comput Methods Biomech Biomed Engin; 2007 Dec; 10(6):419-27. PubMed ID: 17896214
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Limiting models for calcification in fibrous tissues adjacent to orthopedic implants: variational indicator functions and influences of implant stiffness.
    Harrigan TP
    Bull Math Biol; 1998 Jul; 60(4):615-46. PubMed ID: 9659008
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The role of mineral content in determining the micromechanical properties of discrete trabecular bone remodeling packets.
    Smith LJ; Schirer JP; Fazzalari NL
    J Biomech; 2010 Dec; 43(16):3144-9. PubMed ID: 20723898
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A three-dimensional elastic plastic damage constitutive law for bone tissue.
    Garcia D; Zysset PK; Charlebois M; Curnier A
    Biomech Model Mechanobiol; 2009 Apr; 8(2):149-65. PubMed ID: 18398628
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Long-term study of bone remodelling after femoral stem: a comparison between dexa and finite element simulation.
    Herrera A; Panisello JJ; Ibarz E; Cegoñino J; Puértolas JA; Gracia L
    J Biomech; 2007; 40(16):3615-25. PubMed ID: 17675042
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone.
    Huiskes R; Ruimerman R; van Lenthe GH; Janssen JD
    Nature; 2000 Jun; 405(6787):704-6. PubMed ID: 10864330
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Buckling of adaptive elastic bone-plate: theoretical and numerical investigation.
    Ramtani S; Abdi M
    Biomech Model Mechanobiol; 2005 Jun; 3(4):200-8. PubMed ID: 15668767
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A density distribution algorithm for bone incorporating local orthotropy, modal analysis and theories of cellular solids.
    Impelluso TJ
    Comput Methods Biomech Biomed Engin; 2003 Jun; 6(3):217-23. PubMed ID: 12888433
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Dissociation of mineral and collagen orientations may differentially adapt compact bone for regional loading environments: results from acoustic velocity measurements in deer calcanei.
    Skedros JG; Sorenson SM; Takano Y; Turner CH
    Bone; 2006 Jul; 39(1):143-51. PubMed ID: 16459155
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Computer simulation of trabecular remodeling in human proximal femur using large-scale voxel FE models: Approach to understanding Wolff's law.
    Tsubota K; Suzuki Y; Yamada T; Hojo M; Makinouchi A; Adachi T
    J Biomech; 2009 May; 42(8):1088-94. PubMed ID: 19403138
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Stress shielding and bone resorption in THA: clinical versus computer-simulation studies.
    Huiskes R
    Acta Orthop Belg; 1993; 59 Suppl 1():118-29. PubMed ID: 8116386
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effects of electric and magnetic loadings on bone surface remodeling: a model modification and simulation.
    Kazerooni AF; Rabbani M; Yazdchi M; Kasiri S; Rad HS
    Biomed Tech (Berl); 2011 Jun; 56(3):167-73. PubMed ID: 21657990
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Couple-stress moduli of a trabecular bone idealized as a 3D periodic cellular network.
    Yoo A; Jasiuk I
    J Biomech; 2006; 39(12):2241-52. PubMed ID: 16153655
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Mechanical and electrical interactions in bone remodeling.
    Spadaro JA
    Bioelectromagnetics; 1997; 18(3):193-202. PubMed ID: 9096837
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A bone remodelling model coupling micro-damage growth and repair by 3D BMU-activity.
    García-Aznar JM; Rueberg T; Doblare M
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):147-67. PubMed ID: 15942795
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Skeletal structural adaptations to mechanical usage (SATMU): 2. Redefining Wolff's law: the remodeling problem.
    Frost HM
    Anat Rec; 1990 Apr; 226(4):414-22. PubMed ID: 2184696
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A theoretical framework for strain-related trabecular bone maintenance and adaptation.
    Ruimerman R; Hilbers P; van Rietbergen B; Huiskes R
    J Biomech; 2005 Apr; 38(4):931-41. PubMed ID: 15713314
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The effect of the density-modulus relationship selected to apply material properties in a finite element model of long bone.
    Austman RL; Milner JS; Holdsworth DW; Dunning CE
    J Biomech; 2008 Nov; 41(15):3171-6. PubMed ID: 18922532
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.