These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 19045947)

  • 1. Age-dependent sparing of visual function after bilateral lesions of primary visual cortex.
    Rushmore RJ; Rigolo L; Peer AK; Afifi LM; Valero-Cabré A; Payne BR
    Behav Neurosci; 2008 Dec; 122(6):1274-83. PubMed ID: 19045947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Greater sparing of visually guided orienting behavior after early unilateral occipital lesions: insights from a comparison with the impact of bilateral lesions.
    Payne BR; Cornwell P
    Behav Brain Res; 2004 Apr; 150(1-2):109-16. PubMed ID: 15033284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal death in the lateral geniculate nucleus of young ferrets following a cortical lesion: time-course, age dependence and involvement of caspases.
    Gautschi M; Clarke PG
    Brain Res; 2007 Sep; 1167():20-30. PubMed ID: 17678880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical area in the rat that mediates visual pattern discrimination.
    Wörtwein G; Mogensen J; Williams G; Carlos JH; Divac I
    Acta Neurobiol Exp (Wars); 1994; 54(4):365-76. PubMed ID: 7887187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age correlated differences in the amount of retinal degeneration after striate cortex lesions in monkeys.
    Dineen JT; Hendrickson AE
    Invest Ophthalmol Vis Sci; 1981 Nov; 21(5):749-52. PubMed ID: 7298278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lesions of extrastriate cortex and consequences for visual guidance during locomotion.
    Sherk H; Fowler GA
    Exp Brain Res; 2002 May; 144(2):159-71. PubMed ID: 12012154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limit of spared pattern vision following lesions of the immature visual cortex.
    Payne BR
    Exp Brain Res; 2003 May; 150(1):61-7. PubMed ID: 12698217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reorganization in the visual cortex after retinal and cortical damage.
    Eysel UT; Schweigart G; Mittmann T; Eyding D; Qu Y; Vandesande F; Orban G; Arckens L
    Restor Neurol Neurosci; 1999; 15(2-3):153-64. PubMed ID: 12671230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional rehabilitation of partial cortical blindness?
    Stoerig P
    Restor Neurol Neurosci; 2008; 26(4-5):291-303. PubMed ID: 18997307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. System-wide repercussions and adaptive plasticity: the sequelae of immature visual cortex damage.
    Payne BR
    Restor Neurol Neurosci; 1999; 15(2-3):81-106. PubMed ID: 12671225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Training ameliorates deficits in visual detection and orienting following lesions of primary visual cortex sustained in adulthood and in infancy.
    Payne BR; Lomber SG
    Restor Neurol Neurosci; 2000; 17(2-3):77-88. PubMed ID: 11490080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graded sparing of visually-guided orienting following primary visual cortex ablations within the first postnatal month.
    Payne BR; Lomber SG; Gelston CD
    Behav Brain Res; 2000 Dec; 117(1-2):1-11. PubMed ID: 11099752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of visual functions after early acquired occipital damage.
    Bova SM; Giovenzana A; Signorini S; La Piana R; Uggetti C; Bianchi PE; Fazzi E
    Dev Med Child Neurol; 2008 Apr; 50(4):311-5. PubMed ID: 18312600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Training ameliorates deficits in visual detection and orienting following lesions of primary visual cortex sustained in adulthood and in infancy.
    Restor Neurol Neurosci; 2000 Jan; 17(2):77-88. PubMed ID: 22387736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased cortical plasticity in the elderly: changes in the somatosensory cortex after paired associative stimulation.
    Pellicciari MC; Miniussi C; Rossini PM; De Gennaro L
    Neuroscience; 2009 Sep; 163(1):266-76. PubMed ID: 19524024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of retinal X-cells in cats with neonatal or adult visual cortex damage.
    Tong L; Spear PD; Kalil RE; Callahan EC
    Science; 1982 Jul; 217(4554):72-5. PubMed ID: 7089543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasticity of the visual cortex after injury: what's different about the young brain?
    Payne BR; Lomber SG
    Neuroscientist; 2002 Apr; 8(2):174-85. PubMed ID: 11954561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early remodeling in an inducible animal model of retinal degeneration.
    Nagar S; Krishnamoorthy V; Cherukuri P; Jain V; Dhingra NK
    Neuroscience; 2009 May; 160(2):517-29. PubMed ID: 19272416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short-term (2 to 5 h) dark exposure lowers long-term potentiation (LTP) induction threshold in rat primary visual cortex.
    Kuo MC; Dringenberg HC
    Brain Res; 2009 Jun; 1276():58-66. PubMed ID: 19409376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced adaptation of visual cortical cells to visual stimulation in aged cats.
    Hua T; Li G; Tang C; Wang Z; Chang S
    Neurosci Lett; 2009 Feb; 451(1):25-8. PubMed ID: 19121368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.