These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 19046430)

  • 1. A discriminative method for protein remote homology detection and fold recognition combining Top-n-grams and latent semantic analysis.
    Liu B; Wang X; Lin L; Dong Q; Wang X
    BMC Bioinformatics; 2008 Dec; 9():510. PubMed ID: 19046430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of latent semantic analysis to protein remote homology detection.
    Dong QW; Wang XL; Lin L
    Bioinformatics; 2006 Feb; 22(3):285-90. PubMed ID: 16317074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition.
    Melvin I; Ie E; Kuang R; Weston J; Stafford WN; Leslie C
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S2. PubMed ID: 17570145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of nonnegative matrix factorization to improve profile-profile alignment features for fold recognition and remote homolog detection.
    Jung I; Lee J; Lee SY; Kim D
    BMC Bioinformatics; 2008 Jul; 9():298. PubMed ID: 18590572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using distances between Top-n-gram and residue pairs for protein remote homology detection.
    Liu B; Xu J; Zou Q; Xu R; Wang X; Chen Q
    BMC Bioinformatics; 2014; 15 Suppl 2(Suppl 2):S3. PubMed ID: 24564580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein Remote Homology Detection and Fold Recognition Based on Sequence-Order Frequency Matrix.
    Liu B; Chen J; Guo M; Wang X
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):292-300. PubMed ID: 29990004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining evolutionary information extracted from frequency profiles with sequence-based kernels for protein remote homology detection.
    Liu B; Zhang D; Xu R; Xu J; Wang X; Chen Q; Dong Q; Chou KC
    Bioinformatics; 2014 Feb; 30(4):472-9. PubMed ID: 24318998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene ontology-based protein function prediction by using sequence composition information.
    Dong Q; Zhou S; Deng L; Guan J
    Protein Pept Lett; 2010 Jun; 17(6):789-95. PubMed ID: 19995340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Building multiclass classifiers for remote homology detection and fold recognition.
    Rangwala H; Karypis G
    BMC Bioinformatics; 2006 Oct; 7():455. PubMed ID: 17042943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fold recognition by combining profile-profile alignment and support vector machine.
    Han S; Lee BC; Yu ST; Jeong CS; Lee S; Kim D
    Bioinformatics; 2005 Jun; 21(11):2667-73. PubMed ID: 15769835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Profile-based string kernels for remote homology detection and motif extraction.
    Kuang R; Ie E; Wang K; Wang K; Siddiqi M; Freund Y; Leslie C
    J Bioinform Comput Biol; 2005 Jun; 3(3):527-50. PubMed ID: 16108083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remote protein homology detection and fold recognition using two-layer support vector machine classifiers.
    Muda HM; Saad P; Othman RM
    Comput Biol Med; 2011 Aug; 41(8):687-99. PubMed ID: 21704312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Profile-based direct kernels for remote homology detection and fold recognition.
    Rangwala H; Karypis G
    Bioinformatics; 2005 Dec; 21(23):4239-47. PubMed ID: 16188929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast model-based protein homology detection without alignment.
    Hochreiter S; Heusel M; Obermayer K
    Bioinformatics; 2007 Jul; 23(14):1728-36. PubMed ID: 17488755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A discriminative method for family-based protein remote homology detection that combines inductive logic programming and propositional models.
    Bernardes JS; Carbone A; Zaverucha G
    BMC Bioinformatics; 2011 Mar; 12():83. PubMed ID: 21429187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A sequence alignment-independent method for protein classification.
    Vries JK; Munshi R; Tobi D; Klein-Seetharaman J; Benos PV; Bahar I
    Appl Bioinformatics; 2004; 3(2-3):137-48. PubMed ID: 15693739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homology-based modeling of 3D structures of protein-protein complexes using alignments of modified sequence profiles.
    Kundrotas PJ; Lensink MF; Alexov E
    Int J Biol Macromol; 2008 Aug; 43(2):198-208. PubMed ID: 18572239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motif kernel generated by genetic programming improves remote homology and fold detection.
    HÃ¥ndstad T; Hestnes AJ; Saetrom P
    BMC Bioinformatics; 2007 Jan; 8():23. PubMed ID: 17254344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iterative sequence/secondary structure search for protein homologs: comparison with amino acid sequence alignments and application to fold recognition in genome databases.
    Wallqvist A; Fukunishi Y; Murphy LR; Fadel A; Levy RM
    Bioinformatics; 2000 Nov; 16(11):988-1002. PubMed ID: 11159310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Profile-based string kernels for remote homology detection and motif extraction.
    Kuang R; Ie E; Wang K; Wang K; Siddiqi M; Freund Y; Leslie C
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():152-60. PubMed ID: 16448009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.