These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 19047)

  • 1. Effect of pH on the interaction of benzoate and D-amino acid oxidase.
    Quay S; Massey V
    Biochemistry; 1977 Jul; 16(15):3348-54. PubMed ID: 19047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton release from flavoprotein D-amino acid oxidase on complexation with the zwitterionic ligand, trigonelline.
    Nishina Y; Sato K; Shiga K
    J Biochem; 1990 May; 107(5):726-31. PubMed ID: 1975807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-electron reduction of D-amino acid oxidase. Kinetics of conversion from the red semiquinone to the blue semiquinone.
    Kobayashi K; Hirota K; Ohara H; Hayashi K; Miura R; Yamano T
    Biochemistry; 1983 Apr; 22(9):2239-43. PubMed ID: 6134550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic control of D-amino acid oxidase by benzoate binding.
    Van den Berghe-Snorek S; Stankovich MT
    J Biol Chem; 1985 Mar; 260(6):3373-9. PubMed ID: 2857720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, characterization and preliminary crystallographic data of N6-(6-carbamoylhexyl)-FAD-D-amino-acid oxidase from pig kidney, a semi-synthetic oxidase.
    Stocker A; Hecht HJ; Bückmann AF
    Eur J Biochem; 1996 Jun; 238(2):519-28. PubMed ID: 8681967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association-dissociation of the flavoprotein hog kidney D-amino acid oxidase. Determination of the monomer-dimer equilibrium constant and the energetics of subunit association.
    Horiike K; Shiga K; Nishina Y; Isomoto A; Yamano T
    J Biochem; 1977 Nov; 82(5):1247-55. PubMed ID: 22539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic and equilibrium studies on the interaction of reduced flavoprotein D-amino acid oxidase with pyridine carboxylates.
    Nishina Y; Tojo H; Ushijima H; Shiga K
    J Biochem; 1987 Aug; 102(2):327-32. PubMed ID: 2889727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between D-amino acid oxidase and small molecules.
    Horiike K; Shiga K; Isomoto A; Yamano T
    J Biochem; 1976 Nov; 80(5):1073-83. PubMed ID: 12150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and function of D-amino acid oxidase. IX. Changes in the fluorescence polarization of FAD upon complex formation.
    Yagi K; Tanaka F; Oishi N
    J Biochem; 1975 Feb; 77(2):463-8. PubMed ID: 236295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exchange of free and bound coenzyme of flavin enzymes studied with [14C]FAD.
    Okuda J; Nagamine J; Yagi K
    Biochim Biophys Acta; 1979 Feb; 566(2):245-52. PubMed ID: 33712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and role of ionizing functional groups at the active center of Rhodotorula gracilis D-amino acid oxidase.
    Pollegioni L; Harris CM; Molla G; Pilone MS; Ghisla S
    FEBS Lett; 2001 Nov; 507(3):323-6. PubMed ID: 11696364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical and physical characterization of the active FAD-containing form of nitroalkane oxidase from Fusarium oxysporum.
    Gadda G; Fitzpatrick PF
    Biochemistry; 1998 Apr; 37(17):6154-64. PubMed ID: 9558355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limited proteolysis and X-ray crystallography reveal the origin of substrate specificity and of the rate-limiting product release during oxidation of D-amino acids catalyzed by mammalian D-amino acid oxidase.
    Vanoni MA; Cosma A; Mazzeo D; Mattevi A; Todone F; Curti B
    Biochemistry; 1997 May; 36(19):5624-32. PubMed ID: 9153402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton release during the reductive half-reaction of D-amino acid oxidase.
    Fitzpatrick PF; Massey V
    J Biol Chem; 1982 Sep; 257(17):9958-62. PubMed ID: 6125513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox potentials and their pH dependence of D-amino-acid oxidase of Rhodotorula gracilis and Trigonopsis variabilis.
    Pollegioni L; Porrini D; Molla G; Pilone MS
    Eur J Biochem; 2000 Nov; 267(22):6624-32. PubMed ID: 11054115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Picosecond laser fluorometry of FAD of D-amino acid oxidase-benzoate complex.
    Yagi K; Tanaka F; Nakashima N; Yoshihara K
    J Biol Chem; 1983 Mar; 258(6):3799-802. PubMed ID: 6131888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate recognition and activation mechanism of D-amino acid oxidase: a study using substrate analogs.
    Nishina Y; Sato K; Miura R; Shiga K
    J Biochem; 2000 Aug; 128(2):213-23. PubMed ID: 10920257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The kinetic mechanism of D-amino acid oxidase with D-alpha-aminobutyrate as substrate. Effect of enzyme concentration on the kinetics.
    Fitzpatrick PF; Massey V
    J Biol Chem; 1982 Nov; 257(21):12916-23. PubMed ID: 6127341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophilic amination of a single methionine residue located at the active site of D-amino acid oxidase by O-(2,4-dinitrophenyl)hydroxylamine.
    D'Silva C; Williams CH; Massey V
    Biochemistry; 1986 Sep; 25(19):5602-8. PubMed ID: 2877687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical modification of histidyl residues in D-amino acid oxidase from Rhodotorula gracilis.
    Ramón F; de la Mata I; Iannacone S; Pilar Castillón M; Acebal C
    J Biochem; 1995 Nov; 118(5):911-6. PubMed ID: 8749306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.