These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Using tyrosinase as a monophenol monooxygenase: A combined strategy for effective inhibition of melanin formation. Lee SH; Baek K; Lee JE; Kim BG Biotechnol Bioeng; 2016 Apr; 113(4):735-43. PubMed ID: 26461518 [TBL] [Abstract][Full Text] [Related]
4. Kinetic evaluation of phenolase activity of tyrosinase using simplified catalytic reaction system. Yamazaki S; Itoh S J Am Chem Soc; 2003 Oct; 125(43):13034-5. PubMed ID: 14570470 [TBL] [Abstract][Full Text] [Related]
6. Kinetic evaluation of catalase and peroxygenase activities of tyrosinase. Yamazaki S; Morioka C; Itoh S Biochemistry; 2004 Sep; 43(36):11546-53. PubMed ID: 15350140 [TBL] [Abstract][Full Text] [Related]
7. Layer-by-Layer coated tyrosinase: An efficient and selective synthesis of catechols. Guazzaroni M; Crestini C; Saladino R Bioorg Med Chem; 2012 Jan; 20(1):157-66. PubMed ID: 22154294 [TBL] [Abstract][Full Text] [Related]
8. Stopped-flow and steady-state study of the diphenolase activity of mushroom tyrosinase. Rodríguez-López JN; Fenoll LG; García-Ruiz PA; Varón R; Tudela J; Thorneley RN; García-Cánovas F Biochemistry; 2000 Aug; 39(34):10497-506. PubMed ID: 10956040 [TBL] [Abstract][Full Text] [Related]
9. Mushroom tyrosinase in polyelectrolyte multilayers as an optical biosensor for o-diphenols. Fiorentino D; Gallone A; Fiocco D; Palazzo G; Mallardi A Biosens Bioelectron; 2010 May; 25(9):2033-7. PubMed ID: 20176470 [TBL] [Abstract][Full Text] [Related]
11. Tyrosinase extract from Agaricus bisporus mushroom and its in natura tissue for specific phenol removal. Kameda E; Langone MA; Coelho MA Environ Technol; 2006 Nov; 27(11):1209-15. PubMed ID: 17203602 [TBL] [Abstract][Full Text] [Related]
12. Direct immobilization of tyrosinase enzyme from natural mushrooms (Agaricus bisporus) on D-sorbitol cinnamic ester. Marín-Zamora ME; Rojas-Melgarejo F; García-Cánovas F; García-Ruiz PA J Biotechnol; 2006 Nov; 126(3):295-303. PubMed ID: 16730834 [TBL] [Abstract][Full Text] [Related]
13. Efficient immobilization of mushroom tyrosinase utilizing whole cells from Agaricus bisporus and its application for degradation of bisphenol A. Kampmann M; Boll S; Kossuch J; Bielecki J; Uhl S; Kleiner B; Wichmann R Water Res; 2014 Jun; 57():295-303. PubMed ID: 24727498 [TBL] [Abstract][Full Text] [Related]
14. Irreversibly inhibitory kinetics of 3,5-dihydroxyphenyl decanoate on mushroom (Agaricus bisporus) tyrosinase. Qiu L; Chen QX; Wang Q; Huang H; Song KK Bioorg Med Chem; 2005 Nov; 13(22):6206-11. PubMed ID: 16039860 [TBL] [Abstract][Full Text] [Related]
15. Laccase--and not tyrosinase--is the enzyme responsible for quinone methide production from 2,6-dimethoxy-4-allyl phenol. Sugumaran M; Bolton JL Arch Biochem Biophys; 1998 May; 353(2):207-12. PubMed ID: 9606954 [TBL] [Abstract][Full Text] [Related]
16. Effects of the immobilization supports on the catalytic properties of immobilized mushroom tyrosinase: a comparative study using several substrates. Marín-Zamora ME; Rojas-Melgarejo F; García-Cánovas F; García-Ruiz PA J Biotechnol; 2007 Sep; 131(4):388-96. PubMed ID: 17868943 [TBL] [Abstract][Full Text] [Related]
17. Metabolism of diethylstilbestrol: identification of a catechol derived from dienestrol. Weidenfeld J; Carter P; Reinhold VN; Tanner SB; Engel LL Biomed Mass Spectrom; 1978 Oct; 5(10):587-90. PubMed ID: 106901 [TBL] [Abstract][Full Text] [Related]