BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 19047144)

  • 1. Chromatin immunoprecipitation-on-chip reveals stress-dependent p53 occupancy in primary normal cells but not in established cell lines.
    Shaked H; Shiff I; Kott-Gutkowski M; Siegfried Z; Haupt Y; Simon I
    Cancer Res; 2008 Dec; 68(23):9671-7. PubMed ID: 19047144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A SNP in the flt-1 promoter integrates the VEGF system into the p53 transcriptional network.
    Menendez D; Krysiak O; Inga A; Krysiak B; Resnick MA; Schönfelder G
    Proc Natl Acad Sci U S A; 2006 Jan; 103(5):1406-11. PubMed ID: 16432214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatin immunoprecipitation analysis fails to support the latency model for regulation of p53 DNA binding activity in vivo.
    Kaeser MD; Iggo RD
    Proc Natl Acad Sci U S A; 2002 Jan; 99(1):95-100. PubMed ID: 11756653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amyloid-beta precursor-like protein APLP1 is a novel p53 transcriptional target gene that augments neuroblastoma cell death upon genotoxic stress.
    Tang X; Milyavsky M; Goldfinger N; Rotter V
    Oncogene; 2007 Nov; 26(52):7302-12. PubMed ID: 17533371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human MUC1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response.
    Wei X; Xu H; Kufe D
    Cancer Cell; 2005 Feb; 7(2):167-78. PubMed ID: 15710329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. hCAS/CSE1L associates with chromatin and regulates expression of select p53 target genes.
    Tanaka T; Ohkubo S; Tatsuno I; Prives C
    Cell; 2007 Aug; 130(4):638-50. PubMed ID: 17719542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role for Kruppel-like factor 4 in determining the outcome of p53 response to DNA damage.
    Zhou Q; Hong Y; Zhan Q; Shen Y; Liu Z
    Cancer Res; 2009 Nov; 69(21):8284-92. PubMed ID: 19826046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. p53-mediated downregulation of H ferritin promoter transcriptional efficiency via NF-Y.
    Faniello MC; Di Sanzo M; Quaresima B; Baudi F; Di Caro V; Cuda G; Morrone G; Del Sal G; Spinelli G; Venuta S; Costanzo F
    Int J Biochem Cell Biol; 2008; 40(10):2110-9. PubMed ID: 18372207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. p53 regulates the transcription of its Delta133p53 isoform through specific response elements contained within the TP53 P2 internal promoter.
    Marcel V; Vijayakumar V; Fernández-Cuesta L; Hafsi H; Sagne C; Hautefeuille A; Olivier M; Hainaut P
    Oncogene; 2010 May; 29(18):2691-700. PubMed ID: 20190805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histone deacetylase 2 modulates p53 transcriptional activities through regulation of p53-DNA binding activity.
    Harms KL; Chen X
    Cancer Res; 2007 Apr; 67(7):3145-52. PubMed ID: 17409421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA damage signalling recruits RREB-1 to the p53 tumour suppressor promoter.
    Liu H; Hew HC; Lu ZG; Yamaguchi T; Miki Y; Yoshida K
    Biochem J; 2009 Aug; 422(3):543-51. PubMed ID: 19558368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of an IFN-inducible cellular senescence gene, IFI16, is up-regulated by p53.
    Song LL; Alimirah F; Panchanathan R; Xin H; Choubey D
    Mol Cancer Res; 2008 Nov; 6(11):1732-41. PubMed ID: 18974396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A global map of p53 transcription-factor binding sites in the human genome.
    Wei CL; Wu Q; Vega VB; Chiu KP; Ng P; Zhang T; Shahab A; Yong HC; Fu Y; Weng Z; Liu J; Zhao XD; Chew JL; Lee YL; Kuznetsov VA; Sung WK; Miller LD; Lim B; Liu ET; Yu Q; Ng HH; Ruan Y
    Cell; 2006 Jan; 124(1):207-19. PubMed ID: 16413492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. p53 and Delta Np63 alpha differentially bind and regulate target genes involved in cell cycle arrest, DNA repair and apoptosis.
    Schavolt KL; Pietenpol JA
    Oncogene; 2007 Sep; 26(42):6125-32. PubMed ID: 17404570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. p53 is preferentially recruited to the promoters of growth arrest genes p21 and GADD45 during replicative senescence of normal human fibroblasts.
    Jackson JG; Pereira-Smith OM
    Cancer Res; 2006 Sep; 66(17):8356-60. PubMed ID: 16951143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hepcidin, a key regulator of iron metabolism, is transcriptionally activated by p53.
    Weizer-Stern O; Adamsky K; Margalit O; Ashur-Fabian O; Givol D; Amariglio N; Rechavi G
    Br J Haematol; 2007 Jul; 138(2):253-62. PubMed ID: 17593032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DUSP1 is controlled by p53 during the cellular response to oxidative stress.
    Liu YX; Wang J; Guo J; Wu J; Lieberman HB; Yin Y
    Mol Cancer Res; 2008 Apr; 6(4):624-33. PubMed ID: 18403641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple response elements and differential p53 binding control Perp expression during apoptosis.
    Reczek EE; Flores ER; Tsay AS; Attardi LD; Jacks T
    Mol Cancer Res; 2003 Dec; 1(14):1048-57. PubMed ID: 14707288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. p53 binds the nuclear matrix in normal cells: binding involves the proline-rich domain of p53 and increases following genotoxic stress.
    Jiang M; Axe T; Holgate R; Rubbi CP; Okorokov AL; Mee T; Milner J
    Oncogene; 2001 Sep; 20(39):5449-58. PubMed ID: 11571642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo analyses of UV-irradiation-induced p53 promoter binding using a novel quantitative real-time PCR assay.
    Potratz JC; Mlody B; Berdel WE; Serve H; Müller-Tidow C
    Int J Oncol; 2005 Feb; 26(2):493-8. PubMed ID: 15645135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.