These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
370 related articles for article (PubMed ID: 19047354)
81. Structural basis for antibody targeting of the broadly expressed microbial polysaccharide poly- Soliman C; Walduck AK; Yuriev E; Richards JS; Cywes-Bentley C; Pier GB; Ramsland PA J Biol Chem; 2018 Apr; 293(14):5079-5089. PubMed ID: 29449370 [TBL] [Abstract][Full Text] [Related]
82. A novel medical device coating prevents Staphylococcus aureus biofilm formation on medical device surfaces. Hogan S; Kasotakis E; Maher S; Cavanagh B; O'Gara JP; Pandit A; Keyes TE; Devocelle M; O'Neill E FEMS Microbiol Lett; 2019 May; 366(9):. PubMed ID: 31095299 [TBL] [Abstract][Full Text] [Related]
83. Biofilm formation and prevalence of adhesion genes among Staphylococcus aureus isolates from different food sources. Chen Q; Xie S; Lou X; Cheng S; Liu X; Zheng W; Zheng Z; Wang H Microbiologyopen; 2020 Jan; 9(1):e00946. PubMed ID: 31769202 [TBL] [Abstract][Full Text] [Related]
84. Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Izano EA; Amarante MA; Kher WB; Kaplan JB Appl Environ Microbiol; 2008 Jan; 74(2):470-6. PubMed ID: 18039822 [TBL] [Abstract][Full Text] [Related]
85. The synergy of berberine chloride and totarol against Staphylococcus aureus grown in planktonic and biofilm cultures. Guo N; Zhao X; Li W; Shi C; Meng R; Liu Z; Yu L J Med Microbiol; 2015 Aug; 64(8):891-900. PubMed ID: 26272283 [TBL] [Abstract][Full Text] [Related]
86. Cell-wall-anchored proteins affect invasive host colonization and biofilm formation in Staphylococcus aureus. Xu Z; Li Y; Xu A; Soteyome T; Yuan L; Ma Q; Seneviratne G; Li X; Liu J Microbiol Res; 2024 Aug; 285():127782. PubMed ID: 38833832 [TBL] [Abstract][Full Text] [Related]
88. Wall teichoic acids are dispensable for anchoring the PNAG exopolysaccharide to the Staphylococcus aureus cell surface. Vergara-Irigaray M; Maira-Litrán T; Merino N; Pier GB; Penadés JR; Lasa I Microbiology (Reading); 2008 Mar; 154(Pt 3):865-877. PubMed ID: 18310032 [TBL] [Abstract][Full Text] [Related]
89. Biofilm-infected intracerebroventricular shunts elicit inflammation within the central nervous system. Snowden JN; Beaver M; Smeltzer MS; Kielian T Infect Immun; 2012 Sep; 80(9):3206-14. PubMed ID: 22753376 [TBL] [Abstract][Full Text] [Related]
90. Human monoclonal antibodies against de Vor L; van Dijk B; van Kessel K; Kavanaugh JS; de Haas C; Aerts PC; Viveen MC; Boel EC; Fluit AC; Kwiecinski JM; Krijger GC; Ramakers RM; Beekman FJ; Dadachova E; Lam MG; Vogely HC; van der Wal BC; van Strijp JA; Horswill AR; Weinans H; Rooijakkers SH Elife; 2022 Jan; 11():. PubMed ID: 34989676 [TBL] [Abstract][Full Text] [Related]
91. The staphylococcal exopolysaccharide PIA - Biosynthesis and role in biofilm formation, colonization, and infection. Nguyen HTT; Nguyen TH; Otto M Comput Struct Biotechnol J; 2020; 18():3324-3334. PubMed ID: 33240473 [TBL] [Abstract][Full Text] [Related]
92. Bap, a biofilm matrix protein of Staphylococcus aureus prevents cellular internalization through binding to GP96 host receptor. Valle J; Latasa C; Gil C; Toledo-Arana A; Solano C; Penadés JR; Lasa I PLoS Pathog; 2012; 8(8):e1002843. PubMed ID: 22876182 [TBL] [Abstract][Full Text] [Related]
93. Involvement of iron in biofilm formation by Staphylococcus aureus. Lin MH; Shu JC; Huang HY; Cheng YC PLoS One; 2012; 7(3):e34388. PubMed ID: 22479621 [TBL] [Abstract][Full Text] [Related]
94. Biofilm matrix exoproteins induce a protective immune response against Staphylococcus aureus biofilm infection. Gil C; Solano C; Burgui S; Latasa C; García B; Toledo-Arana A; Lasa I; Valle J Infect Immun; 2014 Mar; 82(3):1017-29. PubMed ID: 24343648 [TBL] [Abstract][Full Text] [Related]
96. SdrC induces staphylococcal biofilm formation through a homophilic interaction. Barbu EM; Mackenzie C; Foster TJ; Höök M Mol Microbiol; 2014 Oct; 94(1):172-85. PubMed ID: 25115812 [TBL] [Abstract][Full Text] [Related]
97. Comparison of 3 real-time, quantitative murine models of staphylococcal biofilm infection by using in vivo bioluminescent imaging. Walton KD; Lord A; Kendall LV; Dow SW Comp Med; 2014 Feb; 64(1):25-33. PubMed ID: 24512958 [TBL] [Abstract][Full Text] [Related]
98. Immuno-detection of Staphylococcus aureus biofilm on a cochlear implant. Kos MI; Stenz L; François P; Guyot JP; Schrenzel J Infection; 2009 Oct; 37(5):450-4. PubMed ID: 19280117 [TBL] [Abstract][Full Text] [Related]
99. The use of drip flow and rotating disk reactors for Staphylococcus aureus biofilm analysis. Schwartz K; Stephenson R; Hernandez M; Jambang N; Boles BR J Vis Exp; 2010 Dec; (46):. PubMed ID: 21206478 [TBL] [Abstract][Full Text] [Related]