These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 19047399)
41. The use of biologically produced ferrihydrite for the isolation of novel iron-reducing bacteria. Straub KL; Hanzlik M; Buchholz-Cleven BE Syst Appl Microbiol; 1998 Aug; 21(3):442-9. PubMed ID: 9779609 [TBL] [Abstract][Full Text] [Related]
42. Limited reduction of ferrihydrite encrusted by goethite in freshwater sediment. Kikuchi S; Makita H; Konno U; Shiraishi F; Ijiri A; Takai K; Maeda M; Takahashi Y Geobiology; 2016 Jul; 14(4):374-89. PubMed ID: 27027643 [TBL] [Abstract][Full Text] [Related]
43. The distribution of active iron-cycling bacteria in marine and freshwater sediments is decoupled from geochemical gradients. Otte JM; Harter J; Laufer K; Blackwell N; Straub D; Kappler A; Kleindienst S Environ Microbiol; 2018 Jul; 20(7):2483-2499. PubMed ID: 29708639 [TBL] [Abstract][Full Text] [Related]
44. Desulfurispora thermophila gen. nov., sp. nov., a thermophilic, spore-forming sulfate-reducer isolated from a sulfidogenic fluidized-bed reactor. Kaksonen AH; Spring S; Schumann P; Kroppenstedt RM; Puhakka JA Int J Syst Evol Microbiol; 2007 May; 57(Pt 5):1089-1094. PubMed ID: 17473265 [TBL] [Abstract][Full Text] [Related]
45. Evidence for rapid microscale bacterial redox cycling of iron in circumneutral environments. Sobolev D; Roden EE Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):587-97. PubMed ID: 12448754 [TBL] [Abstract][Full Text] [Related]
47. Carboxydothermus pertinax sp. nov., a thermophilic, hydrogenogenic, Fe(III)-reducing, sulfur-reducing carboxydotrophic bacterium from an acidic hot spring. Yoneda Y; Yoshida T; Kawaichi S; Daifuku T; Takabe K; Sako Y Int J Syst Evol Microbiol; 2012 Jul; 62(Pt 7):1692-1697. PubMed ID: 21908679 [TBL] [Abstract][Full Text] [Related]
48. Microbe interactions drive the formation of floating iron films in circumneutral wetlands. Dong L; Chen M; Liu C; Lv Y; Wang X; Lei Q; Fang Y; Tong H Sci Total Environ; 2024 Jan; 906():167711. PubMed ID: 37832684 [TBL] [Abstract][Full Text] [Related]
49. Geobacter daltonii sp. nov., an Fe(III)- and uranium(VI)-reducing bacterium isolated from a shallow subsurface exposed to mixed heavy metal and hydrocarbon contamination. Prakash O; Gihring TM; Dalton DD; Chin KJ; Green SJ; Akob DM; Wanger G; Kostka JE Int J Syst Evol Microbiol; 2010 Mar; 60(Pt 3):546-553. PubMed ID: 19654355 [TBL] [Abstract][Full Text] [Related]
50. Composition and activity of an autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture. Blöthe M; Roden EE Appl Environ Microbiol; 2009 Nov; 75(21):6937-40. PubMed ID: 19749073 [TBL] [Abstract][Full Text] [Related]
51. Selection of bacteria capable of dissimilatory reduction of Fe(III) from a long-term continuous culture on molasses and their use in a microbial fuel cell. Sikora A; Wójtowicz-Sieńko J; Piela P; Zielenkiewicz U; Tomczyk-Zak K; Chojnacka A; Sikora R; Kowalczyk P; Grzesiuk E; Błaszczyk M J Microbiol Biotechnol; 2011 Mar; 21(3):305-16. PubMed ID: 21464603 [TBL] [Abstract][Full Text] [Related]
52. Rhodovulum iodosum sp. nov. and Rhodovulum robiginosum sp. nov., two new marine phototrophic ferrous-iron-oxidizing purple bacteria. Straub KL; Rainey FA; Widdel F Int J Syst Bacteriol; 1999 Apr; 49 Pt 2():729-35. PubMed ID: 10319496 [TBL] [Abstract][Full Text] [Related]
53. Linking microbial oxidation of arsenic with detection and phylogenetic analysis of arsenite oxidase genes in diverse geothermal environments. Hamamura N; Macur RE; Korf S; Ackerman G; Taylor WP; Kozubal M; Reysenbach AL; Inskeep WP Environ Microbiol; 2009 Feb; 11(2):421-31. PubMed ID: 19196273 [TBL] [Abstract][Full Text] [Related]
54. Growth of microaerophilic Fe(II)-oxidizing bacteria using Fe(II) produced by Fe(III) photoreduction. Lueder U; Maisch M; Jørgensen BB; Druschel G; Schmidt C; Kappler A Geobiology; 2022 May; 20(3):421-434. PubMed ID: 35014744 [TBL] [Abstract][Full Text] [Related]
56. Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. Kashefi K; Tor JM; Holmes DE; Gaw Van Praagh CV; Reysenbach AL; Lovley DR Int J Syst Evol Microbiol; 2002 May; 52(Pt 3):719-728. PubMed ID: 12054231 [TBL] [Abstract][Full Text] [Related]
57. Humic substance-mediated Fe(III) reduction by a fermenting Bacillus strain from the alkaline gut of a humus-feeding scarab beetle larva. Hobbie SN; Li X; Basen M; Stingl U; Brune A Syst Appl Microbiol; 2012 Jun; 35(4):226-32. PubMed ID: 22525666 [TBL] [Abstract][Full Text] [Related]
58. Iron corrosion induced by nonhydrogenotrophic nitrate-reducing Prolixibacter sp. strain MIC1-1. Iino T; Ito K; Wakai S; Tsurumaru H; Ohkuma M; Harayama S Appl Environ Microbiol; 2015 Mar; 81(5):1839-46. PubMed ID: 25548048 [TBL] [Abstract][Full Text] [Related]
59. Desulfovibrio alkalitolerans sp. nov., a novel alkalitolerant, sulphate-reducing bacterium isolated from district heating water. Abildgaard L; Nielsen MB; Kjeldsen KU; Ingvorsen K Int J Syst Evol Microbiol; 2006 May; 56(Pt 5):1019-1024. PubMed ID: 16627648 [TBL] [Abstract][Full Text] [Related]
60. Stable Isotope Probing for Microbial Iron Reduction in Chocolate Pots Hot Spring, Yellowstone National Park. Fortney NW; He S; Kulkarni A; Friedrich MW; Holz C; Boyd ES; Roden EE Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29602784 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]