BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 19047416)

  • 21. Discovery of the First Germline-Restricted Gene by Subtractive Transcriptomic Analysis in the Zebra Finch, Taeniopygia guttata.
    Biederman MK; Nelson MM; Asalone KC; Pedersen AL; Saldanha CJ; Bracht JR
    Curr Biol; 2018 May; 28(10):1620-1627.e5. PubMed ID: 29731307
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Base composition is the primary factor responsible for the variation of amino acid usage in zebra finch (Taeniopygia guttata).
    Rao Y; Wang Z; Luo W; Sheng W; Zhang R; Chai X
    PLoS One; 2018; 13(12):e0204796. PubMed ID: 30517105
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The adaptive genomic landscape of beak morphology in Darwin's finches.
    Lawson LP; Petren K
    Mol Ecol; 2017 Oct; 26(19):4978-4989. PubMed ID: 28475225
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Similar patterns of genetic diversity and linkage disequilibrium in Western chimpanzees (Pan troglodytes verus) and humans indicate highly conserved mechanisms of MHC molecular evolution.
    Vangenot C; Nunes JM; Doxiadis GM; Poloni ES; Bontrop RE; de Groot NG; Sanchez-Mazas A
    BMC Evol Biol; 2020 Sep; 20(1):119. PubMed ID: 32933484
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic effects on sperm design in the zebra finch.
    Birkhead TR; Pellatt EJ; Brekke P; Yeates R; Castillo-Juarez H
    Nature; 2005 Mar; 434(7031):383-7. PubMed ID: 15772662
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative landscape genetics and the adaptive radiation of Darwin's finches: the role of peripheral isolation.
    Petren K; Grant PR; Grant BR; Keller LF
    Mol Ecol; 2005 Sep; 14(10):2943-57. PubMed ID: 16101765
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-wide linkage disequilibrium and genetic diversity in five populations of Australian domestic sheep.
    Al-Mamun HA; Clark SA; Kwan P; Gondro C
    Genet Sel Evol; 2015 Nov; 47():90. PubMed ID: 26602211
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Replicated high-density genetic maps of two great tit populations reveal fine-scale genomic departures from sex-equal recombination rates.
    van Oers K; Santure AW; De Cauwer I; van Bers NE; Crooijmans RP; Sheldon BC; Visser ME; Slate J; Groenen MA
    Heredity (Edinb); 2014 Mar; 112(3):307-16. PubMed ID: 24149651
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Founder effects shape linkage disequilibrium and genomic diversity of a partially clonal invader.
    Flanagan BA; Krueger-Hadfield SA; Murren CJ; Nice CC; Strand AE; Sotka EE
    Mol Ecol; 2021 May; 30(9):1962-1978. PubMed ID: 33604965
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparison of SNPs and microsatellites as linkage mapping markers: lessons from the zebra finch (Taeniopygia guttata).
    Ball AD; Stapley J; Dawson DA; Birkhead TR; Burke T; Slate J
    BMC Genomics; 2010 Apr; 11():218. PubMed ID: 20359323
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular phylogenetic analysis of zebra finch basic helix-loop-helix transcription factors.
    Liu W; Zhao C
    Biochem Genet; 2011 Apr; 49(3-4):226-41. PubMed ID: 21165766
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Population Differences in Susceptibility to
    Hofmeister EK; Balakrishnan CN; Atkinson CT
    Avian Dis; 2018 Dec; 62(4):351-354. PubMed ID: 31119918
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sisyphean evolution in Darwin's finches.
    McKay BD; Zink RM
    Biol Rev Camb Philos Soc; 2015 Aug; 90(3):689-98. PubMed ID: 25040800
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chromosomal polymorphism and comparative painting analysis in the zebra finch.
    Itoh Y; Arnold AP
    Chromosome Res; 2005; 13(1):47-56. PubMed ID: 15791411
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of the chicken and zebra finch Z chromosomes shows evolutionary rearrangements.
    Itoh Y; Kampf K; Arnold AP
    Chromosome Res; 2006; 14(8):805-15. PubMed ID: 17139532
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Basal metabolic rate can evolve independently of morphological and behavioural traits.
    Mathot KJ; Martin K; Kempenaers B; Forstmeier W
    Heredity (Edinb); 2013 Sep; 111(3):175-81. PubMed ID: 23632896
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The evolutionary history of Darwin's finches: speciation, gene flow, and introgression in a fragmented landscape.
    Farrington HL; Lawson LP; Clark CM; Petren K
    Evolution; 2014 Oct; 68(10):2932-44. PubMed ID: 24976076
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Utilization of a zebra finch BAC library to determine the structure of an avian androgen receptor genomic region.
    Luo M; Yu Y; Kim H; Kudrna D; Itoh Y; Agate RJ; Melamed E; Goicoechea JL; Talag J; Mueller C; Wang W; Currie J; Sisneros NB; Wing RA; Arnold AP
    Genomics; 2006 Jan; 87(1):181-90. PubMed ID: 16321505
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The reality and importance of founder speciation in evolution.
    Templeton AR
    Bioessays; 2008 May; 30(5):470-9. PubMed ID: 18404703
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Water restriction influences intra-pair vocal behavior and the acoustic structure of vocalisations in the opportunistically breeding zebra finch (Taeniopygia guttata).
    Prior NH; Fernandez MSA; Soula HA; Vignal C
    Behav Processes; 2019 May; 162():147-156. PubMed ID: 30825505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.