These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 19047573)

  • 1. The representation of abstract task rules in the human prefrontal cortex.
    Bengtsson SL; Haynes JD; Sakai K; Buckley MJ; Passingham RE
    Cereb Cortex; 2009 Aug; 19(8):1929-36. PubMed ID: 19047573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural Representations of Hierarchical Rule Sets: The Human Control System Represents Rules Irrespective of the Hierarchical Level to Which They Belong.
    Pischedda D; Görgen K; Haynes JD; Reverberi C
    J Neurosci; 2017 Dec; 37(50):12281-12296. PubMed ID: 29114072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific and nonspecific neural activity during selective processing of visual representations in working memory.
    Oh H; Leung HC
    J Cogn Neurosci; 2010 Feb; 22(2):292-306. PubMed ID: 19400681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specialization in the left prefrontal cortex for sentence comprehension.
    Hashimoto R; Sakai KL
    Neuron; 2002 Aug; 35(3):589-97. PubMed ID: 12165479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial maps in frontal and prefrontal cortex.
    Hagler DJ; Sereno MI
    Neuroimage; 2006 Jan; 29(2):567-77. PubMed ID: 16289928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct contributions of the caudate nucleus, rostral prefrontal cortex, and parietal cortex to the execution of instructed tasks.
    Stocco A; Lebiere C; O'Reilly RC; Anderson JR
    Cogn Affect Behav Neurosci; 2012 Dec; 12(4):611-28. PubMed ID: 22956331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural correlates of preparation for action selection as a function of specific task demands.
    Donohue SE; Wendelken C; Bunge SA
    J Cogn Neurosci; 2008 Apr; 20(4):694-706. PubMed ID: 18052782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Choosing the rules: distinct and overlapping frontoparietal representations of task rules for perceptual decisions.
    Zhang J; Kriegeskorte N; Carlin JD; Rowe JB
    J Neurosci; 2013 Jul; 33(29):11852-62. PubMed ID: 23864675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ventrolateral prefrontal cortex activity associated with individual differences in arbitrary delayed paired-association learning performance: a functional magnetic resonance imaging study.
    Tanabe HC; Sadato N
    Neuroscience; 2009 May; 160(3):688-97. PubMed ID: 19285546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prefrontal mechanisms in preference and non-preference-based judgments.
    Foo JC; Haji T; Sakai K
    Neuroimage; 2014 Jul; 95():151-61. PubMed ID: 24662580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of Prefrontal Cortex and Mediodorsal Thalamus in Task Engagement and Behavioral Flexibility.
    Marton TF; Seifikar H; Luongo FJ; Lee AT; Sohal VS
    J Neurosci; 2018 Mar; 38(10):2569-2578. PubMed ID: 29437889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delayed match to object or place: an event-related fMRI study of short-term stimulus maintenance and the role of stimulus pre-exposure.
    Schon K; Tinaz S; Somers DC; Stern CE
    Neuroimage; 2008 Jan; 39(2):857-72. PubMed ID: 17950623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional topography of working memory for face or voice identity.
    Rämä P; Courtney SM
    Neuroimage; 2005 Jan; 24(1):224-34. PubMed ID: 15588614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Taking a gamble or playing by the rules: dissociable prefrontal systems implicated in probabilistic versus deterministic rule-based decisions.
    Bhanji JP; Beer JS; Bunge SA
    Neuroimage; 2010 Jan; 49(2):1810-9. PubMed ID: 19781652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age differences in orbitofrontal activation: an fMRI investigation of delayed match and nonmatch to sample.
    Lamar M; Yousem DM; Resnick SM
    Neuroimage; 2004 Apr; 21(4):1368-76. PubMed ID: 15050562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the lateral prefrontal cortex and anterior cingulate in stimulus-response association reversals.
    Parris BA; Thai NJ; Benattayallah A; Summers IR; Hodgson TL
    J Cogn Neurosci; 2007 Jan; 19(1):13-24. PubMed ID: 17214559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A neural mechanism of cognitive control for resolving conflict between abstract task rules.
    Sheu YS; Courtney SM
    Cortex; 2016 Dec; 85():13-24. PubMed ID: 27771559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Medial prefrontal cortex dissociation between self and others in a referential task: an fMRI study based on word traits.
    Yaoi K; Osaka M; Osaka N
    J Physiol Paris; 2013 Dec; 107(6):517-25. PubMed ID: 24121027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of fMRI activation at 3 and 1.5 T during perceptual, cognitive, and affective processing.
    Krasnow B; Tamm L; Greicius MD; Yang TT; Glover GH; Reiss AL; Menon V
    Neuroimage; 2003 Apr; 18(4):813-26. PubMed ID: 12725758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The human prefrontal and parietal association cortices are involved in NO-GO performances: an event-related fMRI study.
    Watanabe J; Sugiura M; Sato K; Sato Y; Maeda Y; Matsue Y; Fukuda H; Kawashima R
    Neuroimage; 2002 Nov; 17(3):1207-16. PubMed ID: 12414261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.