These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 19047633)

  • 1. Functional network reorganization during learning in a brain-computer interface paradigm.
    Jarosiewicz B; Chase SM; Fraser GW; Velliste M; Kass RE; Schwartz AB
    Proc Natl Acad Sci U S A; 2008 Dec; 105(49):19486-91. PubMed ID: 19047633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct types of neural reorganization during long-term learning.
    Zhou X; Tien RN; Ravikumar S; Chase SM
    J Neurophysiol; 2019 Apr; 121(4):1329-1341. PubMed ID: 30726164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Training in cortical control of neuroprosthetic devices improves signal extraction from small neuronal ensembles.
    Helms Tillery SI; Taylor DM; Schwartz AB
    Rev Neurosci; 2003; 14(1-2):107-19. PubMed ID: 12929922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Point-and-click cursor control with an intracortical neural interface system by humans with tetraplegia.
    Kim SP; Simeral JD; Hochberg LR; Donoghue JP; Friehs GM; Black MJ
    IEEE Trans Neural Syst Rehabil Eng; 2011 Apr; 19(2):193-203. PubMed ID: 21278024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavioral and neural correlates of visuomotor adaptation observed through a brain-computer interface in primary motor cortex.
    Chase SM; Kass RE; Schwartz AB
    J Neurophysiol; 2012 Jul; 108(2):624-44. PubMed ID: 22496532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural constraints on learning.
    Sadtler PT; Quick KM; Golub MD; Chase SM; Ryu SI; Tyler-Kabara EC; Yu BM; Batista AP
    Nature; 2014 Aug; 512(7515):423-6. PubMed ID: 25164754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia.
    Kim SP; Simeral JD; Hochberg LR; Donoghue JP; Black MJ
    J Neural Eng; 2008 Dec; 5(4):455-76. PubMed ID: 19015583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Latent inputs improve estimates of neural encoding in motor cortex.
    Chase SM; Schwartz AB; Kass RE
    J Neurosci; 2010 Oct; 30(41):13873-82. PubMed ID: 20943928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Redistribution of Plasticity in a Cerebellar Spiking Neural Network Reproducing an Associative Learning Task Perturbed by TMS.
    Antonietti A; Monaco J; D'Angelo E; Pedrocchi A; Casellato C
    Int J Neural Syst; 2018 Nov; 28(9):1850020. PubMed ID: 29914314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoding arm speed during reaching.
    Inoue Y; Mao H; Suway SB; Orellana J; Schwartz AB
    Nat Commun; 2018 Dec; 9(1):5243. PubMed ID: 30531921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Information conveyed through brain-control: cursor versus robot.
    Taylor DM; Tillery SI; Schwartz AB
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):195-9. PubMed ID: 12899273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural correlates of skill acquisition with a cortical brain-machine interface.
    Ganguly K; Carmena JM
    J Mot Behav; 2010 Nov; 42(6):355-60. PubMed ID: 21184353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Naive coadaptive cortical control.
    Gage GJ; Ludwig KA; Otto KJ; Ionides EL; Kipke DR
    J Neural Eng; 2005 Jun; 2(2):52-63. PubMed ID: 15928412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct cortical control of 3D neuroprosthetic devices.
    Taylor DM; Tillery SI; Schwartz AB
    Science; 2002 Jun; 296(5574):1829-32. PubMed ID: 12052948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in cortical network connectivity with long-term brain-machine interface exposure after chronic amputation.
    Balasubramanian K; Vaidya M; Southerland J; Badreldin I; Eleryan A; Takahashi K; Qian K; Slutzky MW; Fagg AH; Oweiss K; Hatsopoulos NG
    Nat Commun; 2017 Nov; 8(1):1796. PubMed ID: 29180616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trial-by-Trial Motor Cortical Correlates of a Rapidly Adapting Visuomotor Internal Model.
    Stavisky SD; Kao JC; Ryu SI; Shenoy KV
    J Neurosci; 2017 Feb; 37(7):1721-1732. PubMed ID: 28087767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulus-driven changes in sensorimotor behavior and neuronal functional connectivity application to brain-machine interfaces and neurorehabilitation.
    Rebesco JM; Miller LE
    Prog Brain Res; 2011; 192():83-102. PubMed ID: 21763520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Closed-loop decoder adaptation shapes neural plasticity for skillful neuroprosthetic control.
    Orsborn AL; Moorman HG; Overduin SA; Shanechi MM; Dimitrov DF; Carmena JM
    Neuron; 2014 Jun; 82(6):1380-93. PubMed ID: 24945777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constraints on neural redundancy.
    Hennig JA; Golub MD; Lund PJ; Sadtler PT; Oby ER; Quick KM; Ryu SI; Tyler-Kabara EC; Batista AP; Yu BM; Chase SM
    Elife; 2018 Aug; 7():. PubMed ID: 30109848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible large-scale modification of cortical networks during neuroprosthetic control.
    Ganguly K; Dimitrov DF; Wallis JD; Carmena JM
    Nat Neurosci; 2011 May; 14(5):662-7. PubMed ID: 21499255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.