BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 19048104)

  • 1. Functional connectivity in tactile object discrimination: a principal component analysis of an event related fMRI-Study.
    Hartmann S; Missimer JH; Stoeckel C; Abela E; Shah J; Seitz RJ; Weder BJ
    PLoS One; 2008; 3(12):e3831. PubMed ID: 19048104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fronto-parietal circuit for tactile object discrimination: an event-related fMRI study.
    Stoeckel MC; Weder B; Binkofski F; Buccino G; Shah NJ; Seitz RJ
    Neuroimage; 2003 Jul; 19(3):1103-14. PubMed ID: 12880836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural networks engaged in tactile object manipulation: patterns of expression among healthy individuals.
    Kägi G; Missimer JH; Abela E; Seitz RJ; Weder BJ
    Behav Brain Funct; 2010 Nov; 6():71. PubMed ID: 21106078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective connectivity during haptic perception: a study using Granger causality analysis of functional magnetic resonance imaging data.
    Deshpande G; Hu X; Stilla R; Sathian K
    Neuroimage; 2008 May; 40(4):1807-14. PubMed ID: 18329290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oscillatory activity in neocortical networks during tactile discrimination near the limit of spatial acuity.
    Adhikari BM; Sathian K; Epstein CM; Lamichhane B; Dhamala M
    Neuroimage; 2014 May; 91():300-10. PubMed ID: 24434679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Left and right superior parietal lobule in tactile object discrimination.
    Stoeckel MC; Weder B; Binkofski F; Choi HJ; Amunts K; Pieperhoff P; Shah NJ; Seitz RJ
    Eur J Neurosci; 2004 Feb; 19(4):1067-72. PubMed ID: 15009154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Passive somatosensory discrimination tasks in healthy volunteers: differential networks involved in familiar versus unfamiliar shape and length discrimination.
    Van de Winckel A; Sunaert S; Wenderoth N; Peeters R; Van Hecke P; Feys H; Horemans E; Marchal G; Swinnen SP; Perfetti C; De Weerdt W
    Neuroimage; 2005 Jun; 26(2):441-53. PubMed ID: 15907302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A somatosensory-to-motor cascade of cortical areas engaged in perceptual decision making during tactile pattern discrimination.
    Hegner YL; Lindner A; Braun C
    Hum Brain Mapp; 2017 Mar; 38(3):1172-1181. PubMed ID: 27767240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disturbed functional brain interactions underlying deficient tactile object discrimination in Parkinson's disease.
    Weder B; Azari NP; Knorr U; Seitz RJ; Keel A; Nienhusmeier M; Maguire RP; Leenders KL; Ludin HP
    Hum Brain Mapp; 2000 Nov; 11(3):131-45. PubMed ID: 11098793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial Information of Somatosensory Stimuli in the Brain: Multivariate Pattern Analysis of Functional Magnetic Resonance Imaging Data.
    Lee IS; Jung WM; Park HJ; Chae Y
    Neural Plast; 2020; 2020():8307580. PubMed ID: 32684924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What vs. where in touch: an fMRI study.
    Reed CL; Klatzky RL; Halgren E
    Neuroimage; 2005 Apr; 25(3):718-26. PubMed ID: 15808973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tactile-visual integration in the posterior parietal cortex: a functional magnetic resonance imaging study.
    Nakashita S; Saito DN; Kochiyama T; Honda M; Tanabe HC; Sadato N
    Brain Res Bull; 2008 Mar; 75(5):513-25. PubMed ID: 18355627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural correlates of spatial working memory in humans: a functional magnetic resonance imaging study comparing visual and tactile processes.
    Ricciardi E; Bonino D; Gentili C; Sani L; Pietrini P; Vecchi T
    Neuroscience; 2006 Apr; 139(1):339-49. PubMed ID: 16324793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissociation of the neural networks recruited during a haptic object-recognition task: complementary results with a tensorial independent component analysis.
    Habas C; Cabanis EA
    AJNR Am J Neuroradiol; 2008 Oct; 29(9):1715-21. PubMed ID: 18599573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Somatic sensation of hand-object interactive movement is associated with activity in the left inferior parietal cortex.
    Naito E; Ehrsson HH
    J Neurosci; 2006 Apr; 26(14):3783-90. PubMed ID: 16597731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural substrates of tactile object recognition: an fMRI study.
    Reed CL; Shoham S; Halgren E
    Hum Brain Mapp; 2004 Apr; 21(4):236-46. PubMed ID: 15038005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensorimotor integration in S2, PV, and parietal rostroventral areas of the human sylvian fissure.
    Hinkley LB; Krubitzer LA; Nagarajan SS; Disbrow EA
    J Neurophysiol; 2007 Feb; 97(2):1288-97. PubMed ID: 17122318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural networks active during tactile form perception: common and differential activity during macrospatial and microspatial tasks.
    Stoesz MR; Zhang M; Weisser VD; Prather SC; Mao H; Sathian K
    Int J Psychophysiol; 2003 Oct; 50(1-2):41-9. PubMed ID: 14511835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The neural correlates of human working memory for haptically explored object orientations.
    Kaas AL; van Mier H; Goebel R
    Cereb Cortex; 2007 Jul; 17(7):1637-49. PubMed ID: 16966490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuronal substrates of haptic shape encoding and matching: a functional magnetic resonance imaging study.
    Miquée A; Xerri C; Rainville C; Anton JL; Nazarian B; Roth M; Zennou-Azogui Y
    Neuroscience; 2008 Mar; 152(1):29-39. PubMed ID: 18255234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.