These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 190482)

  • 1. A futher theoretical treatment of the turnover of protein bound phospate in the presence of both protein kinase and phosphatase activities.
    Weller M
    J Theor Biol; 1977 Jan; 64(2):391-9. PubMed ID: 190482
    [No Abstract]   [Full Text] [Related]  

  • 2. A theoretical treatment of the turnover of protein-bound phosphate in the presence of both protein kinase and phosphatase activities.
    Weller M
    Biochim Biophys Acta; 1974 May; 343(3):565-83. PubMed ID: 4366299
    [No Abstract]   [Full Text] [Related]  

  • 3. Anchoring and scaffold proteins for kinases and phosphatases.
    Lester LB; Scott JD
    Recent Prog Horm Res; 1997; 52():409-29; discussion 429-30. PubMed ID: 9238861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal distribution of protein kinase and phosphatase activities.
    Inagaki N; Ito M; Nakano T; Inagaki M
    Trends Biochem Sci; 1994 Nov; 19(11):448-52. PubMed ID: 7855885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Turnover of protein-bound phosphorylserine in membrane preparations from ox brain catalysed by intrinsic kinase and phosphatase activity.
    Weller M; Rodnight R
    Biochem J; 1971 Sep; 124(2):393-406. PubMed ID: 4333850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation of protein phosphorylation during fertilization-induced maturation of Urechis caupo oocytes.
    Meijer L; Paul M; Epel D
    Dev Biol; 1982 Nov; 94(1):62-70. PubMed ID: 6295850
    [No Abstract]   [Full Text] [Related]  

  • 7. Subcellular targeting of kinases and phosphatases by association with bifunctional anchoring proteins.
    Coghlan VM; Hausken ZE; Scott JD
    Biochem Soc Trans; 1995 Aug; 23(3):592-6. PubMed ID: 8566423
    [No Abstract]   [Full Text] [Related]  

  • 8. Spatial gradients of cellular phospho-proteins.
    Brown GC; Kholodenko BN
    FEBS Lett; 1999 Sep; 457(3):452-4. PubMed ID: 10471827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling.
    Hunter T
    Cell; 1995 Jan; 80(2):225-36. PubMed ID: 7834742
    [No Abstract]   [Full Text] [Related]  

  • 10. Phosphorylation-dephosphorylation of cardiac microsomes: a possible mechanism for control of calcium uptake by cyclic AMP.
    La Raia PJ; Morkin E
    Recent Adv Stud Cardiac Struct Metab; 1974; 4():417-26. PubMed ID: 4377614
    [No Abstract]   [Full Text] [Related]  

  • 11. Subcellular distribution of the enzymes related to the cellular action of vasopressin in renal medulla.
    Barnes LD; Hui YS; Frohnert PP; Dousa TP
    Endocrinology; 1975 Jan; 96(1):119-28. PubMed ID: 162875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on proteins of animal ribosomes. XVII. Quantitative aspects of enzymatic phosphorylation of ribosomal proteins and particles from rat liver.
    Böhm H; Stahl J
    Acta Biol Med Ger; 1974; 32(5):449-61. PubMed ID: 4369230
    [No Abstract]   [Full Text] [Related]  

  • 13. Chemistry and biology of protein and inositol phosphorylation.
    Köhn M
    Bioorg Med Chem; 2015 Jun; 23(12):2747-8. PubMed ID: 25982077
    [No Abstract]   [Full Text] [Related]  

  • 14. Characterization of the catalytic activities of the PhoQ histidine protein kinase of Salmonella enterica serovar Typhimurium.
    Montagne M; Martel A; Le Moual H
    J Bacteriol; 2001 Mar; 183(5):1787-91. PubMed ID: 11160113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soluble cyclic AMP-dependent protein kinases: review of the enzyme isolated from bovine cardiac muscle.
    Rosen OM; Rangel-Aldao R; Erlichman J
    Curr Top Cell Regul; 1977; 12():39-74. PubMed ID: 193671
    [No Abstract]   [Full Text] [Related]  

  • 16. Phosphorylation and dephosphorylation of renal brush border membranes by protein kinase and phosphoprotein phosphatase.
    Abou-Issa H; Mendicino J; Leibach F; Pillion D
    FEBS Lett; 1975 Feb; 50(2):121-4. PubMed ID: 163206
    [No Abstract]   [Full Text] [Related]  

  • 17. [Distribution of carbonic anhydrase, K+-ATPase and K+-phosphatase in subcellular fractions of gastric mucosa].
    Khramtsov AV; Ottesen BV
    Biokhimiia; 1979 May; 44(5):781-8. PubMed ID: 222356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inositol 1,4,5-trisphosphate turnover enzymes--activities and subcellular distribution in hepatocarcinogenesis.
    Nilsson H; Torndal UB; Eriksson LC
    Carcinogenesis; 1997 Dec; 18(12):2447-51. PubMed ID: 9450494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aromatic acyl phosphates as substrates of acyl phosphatase.
    Ramponi G; Treves C; Guerritore AA
    Arch Biochem Biophys; 1966 Jul; 115(1):129-35. PubMed ID: 4290770
    [No Abstract]   [Full Text] [Related]  

  • 20. Myelin basic protein phosphatase activity in rat brain.
    McNamara JO; Appel SH
    J Neurochem; 1977 Jul; 29(1):27-35. PubMed ID: 69679
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.