BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 19048248)

  • 1. Porcine IgG: structure, genetics, and evolution.
    Butler JE; Wertz N; Deschacht N; Kacskovics I
    Immunogenetics; 2009 Mar; 61(3):209-30. PubMed ID: 19048248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The different effector function capabilities of the seven equine IgG subclasses have implications for vaccine strategies.
    Lewis MJ; Wagner B; Woof JM
    Mol Immunol; 2008 Feb; 45(3):818-27. PubMed ID: 17669496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linkage haplotype for allotypic variants of porcine IgA and IgG subclass genes.
    Kloep A; Wertz N; Mendicino M; Ramsoondar J; Butler JE
    Immunogenetics; 2012 Jun; 64(6):469-73. PubMed ID: 22350166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Five putative subclasses of swine IgG identified from the cDNA sequences of a single animal.
    Kacskovics I; Sun J; Butler JE
    J Immunol; 1994 Oct; 153(8):3565-73. PubMed ID: 7930579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural characterization of the Man5 glycoform of human IgG3 Fc.
    Shah IS; Lovell S; Mehzabeen N; Battaile KP; Tolbert TJ
    Mol Immunol; 2017 Dec; 92():28-37. PubMed ID: 29031045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An engineered Fc variant of an IgG eliminates all immune effector functions via structural perturbations.
    Vafa O; Gilliland GL; Brezski RJ; Strake B; Wilkinson T; Lacy ER; Scallon B; Teplyakov A; Malia TJ; Strohl WR
    Methods; 2014 Jan; 65(1):114-26. PubMed ID: 23872058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of Murine IgG1 and Human IgG4 to Inhibit the Classical Complement and Fcγ Receptor Activation Pathways.
    Lilienthal GM; Rahmöller J; Petry J; Bartsch YC; Leliavski A; Ehlers M
    Front Immunol; 2018; 9():958. PubMed ID: 29867943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunoglobulins, antibody repertoire and B cell development.
    Butler JE; Zhao Y; Sinkora M; Wertz N; Kacskovics I
    Dev Comp Immunol; 2009 Mar; 33(3):321-33. PubMed ID: 18804488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antibody dependent cell-mediated cytotoxicity induced by chimeric mouse-human IgG subclasses and IgG3 antibodies with altered hinge region.
    Michaelsen TE; Aase A; Norderhaug L; Sandlie I
    Mol Immunol; 1992 Mar; 29(3):319-26. PubMed ID: 1557042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro functional characterization of feline IgGs.
    Strietzel CJ; Bergeron LM; Oliphant T; Mutchler VT; Choromanski LJ; Bainbridge G
    Vet Immunol Immunopathol; 2014 Apr; 158(3-4):214-23. PubMed ID: 24560097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of a three amino acid deletion in the CH2 domain of murine IgG1 on Fc-associated effector functions.
    Baudino L; Nimmerjahn F; Shinohara Y; Furukawa J; Petry F; Verbeek JS; Nishimura S; Ravetch JV; Izui S
    J Immunol; 2008 Sep; 181(6):4107-12. PubMed ID: 18768867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperacute rejection by anti-Gal IgG1, IgG2a, and IgG2b is dependent on complement and Fc-gamma receptors.
    Ding JW; Zhou T; Zeng H; Ma L; Verbeek JS; Yin D; Shen J; Chong AS
    J Immunol; 2008 Jan; 180(1):261-8. PubMed ID: 18097027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lysine 322 in the human IgG3 C(H)2 domain is crucial for antibody dependent complement activation.
    Thommesen JE; Michaelsen TE; Løset GÅ; Sandlie I; Brekke OH
    Mol Immunol; 2000 Nov; 37(16):995-1004. PubMed ID: 11395138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a C alpha gene of swine.
    Brown WR; Butler JE
    Mol Immunol; 1994 Jun; 31(8):633-42. PubMed ID: 7545929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino acid differences in the N-terminus of C(H)2 influence the relative abilities of IgG2 and IgG3 to activate complement.
    Sensel MG; Kane LM; Morrison SL
    Mol Immunol; 1997 Oct; 34(14):1019-29. PubMed ID: 9488053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Biology of IgG Subclasses and Their Clinical Relevance to Transplantation.
    Valenzuela NM; Schaub S
    Transplantation; 2018 Jan; 102(1S Suppl 1):S7-S13. PubMed ID: 29266057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antibody repertoire development in fetal and neonatal piglets. XVII. IgG subclass transcription revisited with emphasis on new IgG3.
    Butler JE; Wertz N
    J Immunol; 2006 Oct; 177(8):5480-9. PubMed ID: 17015734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The porcine Ig delta gene: unique chimeric splicing of the first constant region domain in its heavy chain transcripts.
    Zhao Y; Pan-Hammarström Q; Kacskovics I; Hammarström L
    J Immunol; 2003 Aug; 171(3):1312-8. PubMed ID: 12874220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymorphism of the IGHG3 gene in cattle.
    Rabbani H; Brown WR; Butler JE; Hammarström L
    Immunogenetics; 1997; 46(4):326-31. PubMed ID: 9218535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of weak/non-complement-binding HLA antibodies on C1q-binding.
    Hönger G; Amico P; Arnold ML; Spriewald BM; Schaub S
    HLA; 2017 Aug; 90(2):88-94. PubMed ID: 28585289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.