BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 19048638)

  • 21. Poly(vinyl alcohol)/halloysite nanotubes bionanocomposite films: Properties and in vitro osteoblasts and fibroblasts response.
    Zhou WY; Guo B; Liu M; Liao R; Rabie AB; Jia D
    J Biomed Mater Res A; 2010 Jun; 93(4):1574-87. PubMed ID: 20014291
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modification of fibrous poly(L-lactic acid) scaffolds with self-assembling triblock molecules.
    Stendahl JC; Li L; Claussen RC; Stupp SI
    Biomaterials; 2004 Dec; 25(27):5847-56. PubMed ID: 15172497
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photo-initiated grafting of gelatin/N-maleic acyl-chitosan to enhance endothelial cell adhesion, proliferation and function on PLA surface.
    Zhu A; Zhao F; Ma T
    Acta Biomater; 2009 Jul; 5(6):2033-44. PubMed ID: 19299215
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of surface property of poly(lactide-co-glycolide) after oxygen plasma treatment.
    Wan Y; Qu X; Lu J; Zhu C; Wan L; Yang J; Bei J; Wang S
    Biomaterials; 2004 Aug; 25(19):4777-83. PubMed ID: 15120524
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Porous poly (DL-lactic acid) modified chitosan-gelatin scaffolds for tissue engineering.
    Liu H; Yao F; Zhou Y; Yao K; Mei D; Cui L; Cao Y
    J Biomater Appl; 2005 Apr; 19(4):303-22. PubMed ID: 15788427
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of ammonia plasma treatment on the properties and cytocompatibility of a poly(L-lactic acid) film surface.
    Jiao Y; Xu J; Zhou C
    J Biomater Sci Polym Ed; 2012; 23(6):763-77. PubMed ID: 21477458
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis, characterization, and biocompatibility of a novel biomimetic material based on MGF-Ct24E modified poly(D, L-lactic acid).
    Li Y; Zhang B; Ruan C; Wang P; Sun J; Pan J; Wang Y
    J Biomed Mater Res A; 2012 Dec; 100(12):3496-502. PubMed ID: 22941771
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation and immobilization of soluble eggshell membrane protein on the electrospun nanofibers to enhance cell adhesion and growth.
    Jia J; Duan YY; Yu J; Lu JW
    J Biomed Mater Res A; 2008 Aug; 86(2):364-73. PubMed ID: 17969029
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro biocompatibility of different polyester membranes.
    Vaquette C; Fawzi-Grancher S; Lavalle P; Frochot C; Viriot ML; Muller S; Wang X
    Biomed Mater Eng; 2006; 16(4 Suppl):S131-6. PubMed ID: 16823104
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design of bioinspired polymeric materials based on poly(D,L-lactic acid) modifications towards improving its cytocompatibility.
    Niu X; Luo Y; Li Y; Fu C; Chen J; Wang Y
    J Biomed Mater Res A; 2008 Mar; 84(4):908-16. PubMed ID: 17647223
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts.
    Park K; Ju YM; Son JS; Ahn KD; Han DK
    J Biomater Sci Polym Ed; 2007; 18(4):369-82. PubMed ID: 17540114
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein bonding on biodegradable poly(L-lactide-co-caprolactone) membrane for esophageal tissue engineering.
    Zhu Y; Chian KS; Chan-Park MB; Mhaisalkar PS; Ratner BD
    Biomaterials; 2006 Jan; 27(1):68-78. PubMed ID: 16005962
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a biodegradable ureteric stent: surface modification and in vitro assessment.
    Brauers A; Thissen H; Pfannschmidt O; Bienert H; Foerster A; Klee D; Michaeli W; Höcker H; Jakse G
    J Endourol; 1997 Dec; 11(6):399-403. PubMed ID: 9440847
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Immobilization of natural macromolecules on poly-L-lactic acid membrane surface in order to improve its cytocompatibility.
    Ma Z; Gao C; Gong Y; Ji J; Shen J
    J Biomed Mater Res; 2002; 63(6):838-47. PubMed ID: 12418032
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Covalently attached, silver-doped poly(vinyl alcohol) hydrogel films on poly(l-lactic acid).
    Zan X; Kozlov M; McCarthy TJ; Su Z
    Biomacromolecules; 2010 Apr; 11(4):1082-8. PubMed ID: 20307097
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The physical properties and response of osteoblasts to solution cast films of PLGA doped polycaprolactone.
    Tang ZG; Callaghan JT; Hunt JA
    Biomaterials; 2005 Nov; 26(33):6618-24. PubMed ID: 15935466
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface modification of poly(L: -lactic acid) affects initial cell attachment, cell morphology, and cell growth.
    Yamaguchi M; Shinbo T; Kanamori T; Wang PC; Niwa M; Kawakami H; Nagaoka S; Hirakawa K; Kamiya M
    J Artif Organs; 2004; 7(4):187-93. PubMed ID: 15739051
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biodegradable honeycomb-patterned film composed of poly(lactic acid) and dioleoylphosphatidylethanolamine.
    Fukuhira Y; Kitazono E; Hayashi T; Kaneko H; Tanaka M; Shimomura M; Sumi Y
    Biomaterials; 2006 Mar; 27(9):1797-802. PubMed ID: 16293301
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simple and biocompatible micropatterning of multiple cell types on a polymer substrate by using ion implantation.
    Hwang IT; Jung CH; Choi JH; Nho YC
    Langmuir; 2010 Dec; 26(23):18437-41. PubMed ID: 21049964
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface modification of poly-L-lactic acid (PLLA) membrane by grafting acrylamide: an effective way to improve cytocompatibility for chondrocytes.
    Ma Z; Gao C; Shen J
    J Biomater Sci Polym Ed; 2003; 14(1):13-25. PubMed ID: 12635768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.