These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 19049002)

  • 1. Molecular and crystal deformation of cellulose: uniform strain or uniform stress?
    Kong K; Wilding MA; Ibbett RN; Eichhorn SJ
    Faraday Discuss; 2008; 139():283-98; discussion 309-25, 419-20. PubMed ID: 19049002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling crystal and molecular deformation in regenerated cellulose fibers.
    Eichhorn SJ; Young RJ; Davies GR
    Biomacromolecules; 2005; 6(1):507-13. PubMed ID: 15638559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of hydration on the micromechanics of regenerated cellulose fibres from ionic liquid solutions of varying draw ratios.
    Bulota M; Michud A; Hummel M; Hughes M; Sixta H
    Carbohydr Polym; 2016 Oct; 151():1110-1114. PubMed ID: 27474661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers.
    Sturcová A; Davies GR; Eichhorn SJ
    Biomacromolecules; 2005; 6(2):1055-61. PubMed ID: 15762678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of domain orientation on the mechanical properties of regenerated cellulose fibers.
    Kong K; Davies RJ; McDonald MA; Young RJ; Wilding MA; Ibbett RN; Eichhorn SJ
    Biomacromolecules; 2007 Feb; 8(2):624-30. PubMed ID: 17291086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the molecular orientation and tensile properties of uniaxially drawn cellulose films.
    Gindl W; Martinschitz KJ; Boesecke P; Keckes J
    Biomacromolecules; 2006 Nov; 7(11):3146-50. PubMed ID: 17096544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective Young's modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks.
    Tanpichai S; Quero F; Nogi M; Yano H; Young RJ; Lindström T; Sampson WW; Eichhorn SJ
    Biomacromolecules; 2012 May; 13(5):1340-9. PubMed ID: 22423896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanomechanical and structural properties of native cellulose under compressive stress.
    Quesada Cabrera R; Meersman F; McMillan PF; Dmitriev V
    Biomacromolecules; 2011 Jun; 12(6):2178-83. PubMed ID: 21480605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural analysis of Ioncell-F fibres from birch wood.
    Asaadi S; Hummel M; Ahvenainen P; Gubitosi M; Olsson U; Sixta H
    Carbohydr Polym; 2018 Feb; 181():893-901. PubMed ID: 29254051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and Theoretical Study on Terahertz Spectra for Regenerated Cellulose.
    Dai ZL; Xu XD; Gu Y; Zou RJ; Han SS; Peng Y; Lian YX; Wang F; Li XR; Chen ZG; Sun MH; Jiang YD
    Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Mar; 37(3):697-703. PubMed ID: 30148547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanostructure and elastic modulus of single trabecula in bovine cancellous bone.
    Yamada S; Tadano S; Fukuda S
    J Biomech; 2014 Nov; 47(14):3482-7. PubMed ID: 25267574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deformation micromechanics of all-cellulose nanocomposites: comparing matrix and reinforcing components.
    Pullawan T; Wilkinson AN; Zhang LN; Eichhorn SJ
    Carbohydr Polym; 2014 Jan; 100():31-9. PubMed ID: 24188835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of SiC fibres and composites using raman microscopy.
    Young RJ; Broadbridge AB; So C
    J Microsc; 1999 Nov; 196(# (Pt 2)):257-65. PubMed ID: 10540279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring Molecular Strain in Rewetted and Never-Dried Eucalypt Wood with Raman Spectroscopy.
    Guo F; Altaner CM
    Biomacromolecules; 2019 Aug; 20(8):3191-3199. PubMed ID: 31313909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Strength Composite Fibers from Cellulose-Lignin Blends Regenerated from Ionic Liquid Solution.
    Ma Y; Asaadi S; Johansson LS; Ahvenainen P; Reza M; Alekhina M; Rautkari L; Michud A; Hauru L; Hummel M; Sixta H
    ChemSusChem; 2015 Dec; 8(23):4030-9. PubMed ID: 26542190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical properties of cellulose fibres and wood. Orientational aspects in situ investigated with synchrotron radiation.
    Kölln K; Grotkopp I; Burghammer M; Roth SV; Funari SS; Dommach M; Müller M
    J Synchrotron Radiat; 2005 Nov; 12(Pt 6):739-44. PubMed ID: 16239742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regenerated cellulose-silk fibroin blends fibers.
    Marsano E; Corsini P; Canetti M; Freddi G
    Int J Biol Macromol; 2008 Aug; 43(2):106-14. PubMed ID: 18513793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of crystal orientation on cellulose nanocrystals-cellulose acetate nanocomposite fibers prepared by dry spinning.
    Chen S; Schueneman G; Pipes RB; Youngblood J; Moon RJ
    Biomacromolecules; 2014 Oct; 15(10):3827-35. PubMed ID: 25226382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress-transfer in anisotropic and environmentally adaptive cellulose whisker nanocomposites.
    Rusli R; Shanmuganathan K; Rowan SJ; Weder C; Eichhorn SJ
    Biomacromolecules; 2010 Mar; 11(3):762-8. PubMed ID: 20170124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular changes during tensile deformation of single wood fibers followed by Raman microscopy.
    Gierlinger N; Schwanninger M; Reinecke A; Burgert I
    Biomacromolecules; 2006 Jul; 7(7):2077-81. PubMed ID: 16827572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.