These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

563 related articles for article (PubMed ID: 19049040)

  • 1. In situ synthesis and characterization of multi-walled carbon nanotube/Prussian blue nanocomposite materials and application.
    Qiu JD; Xiong M; Liang RP; Zhang J; Xia XH
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4453-60. PubMed ID: 19049040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ synthesis and characterization of multiwalled carbon nanotube/Au nanoparticle composite materials.
    Hu X; Wang T; Qu X; Dong S
    J Phys Chem B; 2006 Jan; 110(2):853-7. PubMed ID: 16471615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene oxide sheet-prussian blue nanocomposites: green synthesis and their extraordinary electrochemical properties.
    Liu XW; Yao ZJ; Wang YF; Wei XW
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):508-12. PubMed ID: 20719478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocomposite based on depositing platinum nanostructure onto carbon nanotubes through a one-pot, facile synthesis method for amperometric sensing.
    Wen D; Zou X; Liu Y; Shang L; Dong S
    Talanta; 2009 Oct; 79(5):1233-7. PubMed ID: 19635352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel amino-acid-based polymer/multi-walled carbon nanotube bio-nanocomposites: highly water dispersible carbon nanotubes decorated with gold nanoparticles.
    Kumar NA; Bund A; Cho BG; Lim KT; Jeong YT
    Nanotechnology; 2009 Jun; 20(22):225608. PubMed ID: 19436092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors.
    Ye JS; Cui HF; Liu X; Lim TM; Zhang WD; Sheu FS
    Small; 2005 May; 1(5):560-5. PubMed ID: 17193486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosensor based on polyaniline-Prussian Blue/multi-walled carbon nanotubes hybrid composites.
    Zou Y; Sun LX; Xu F
    Biosens Bioelectron; 2007 May; 22(11):2669-74. PubMed ID: 17141494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prussian-blue-modified iron oxide magnetic nanoparticles as effective peroxidase-like catalysts to degrade methylene blue with H2O2.
    Wang H; Huang Y
    J Hazard Mater; 2011 Jul; 191(1-3):163-9. PubMed ID: 21570769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid microwave synthesis of chitosan modified carbon nanotube composites.
    Yu JG; Huang KL; Tang JC; Yang Q; Huang DS
    Int J Biol Macromol; 2009 May; 44(4):316-9. PubMed ID: 19022285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ controllable growth of Prussian blue nanocubes on reduced graphene oxide: facile synthesis and their application as enhanced nanoelectrocatalyst for H2O2 reduction.
    Cao L; Liu Y; Zhang B; Lu L
    ACS Appl Mater Interfaces; 2010 Aug; 2(8):2339-46. PubMed ID: 20735106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, characterization, and immobilization of Prussian blue-modified Au nanoparticles: application to electrocatalytic reduction of H2O2.
    Qiu JD; Peng HZ; Liang RP; Li J; Xia XH
    Langmuir; 2007 Feb; 23(4):2133-7. PubMed ID: 17279705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The electronic role of DNA-functionalized carbon nanotubes: efficacy for in situ polymerization of conducting polymer nanocomposites.
    Ma Y; Chiu PL; Serrano A; Ali SR; Chen AM; He H
    J Am Chem Soc; 2008 Jun; 130(25):7921-8. PubMed ID: 18517209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core-shell hybrid nanomaterial based on prussian blue and surface active maghemite nanoparticles as stable electrocatalyst.
    Magro M; Baratella D; Salviulo G; Polakova K; Zoppellaro G; Tucek J; Kaslik J; Zboril R; Vianello F
    Biosens Bioelectron; 2014 Feb; 52():159-65. PubMed ID: 24041662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct electrochemistry and electrocatalysis of reduced glutathione on CNFs-PDDA/PB nanocomposite film modified ITO electrode for biosensors.
    Muthirulan P; Velmurugan R
    Colloids Surf B Biointerfaces; 2011 Apr; 83(2):347-54. PubMed ID: 21215598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon-nanotube-polymer nanocomposites for field-emission cathodes.
    Connolly T; Smith RC; Hernandez Y; Gun'ko Y; Coleman JN; Carey JD
    Small; 2009 Apr; 5(7):826-31. PubMed ID: 19199333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of carbon nanotubes using mesoporous Fe-MCM-41 catalysts.
    Ko JR; Ahn WS
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3442-5. PubMed ID: 17252785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High volume fraction carbon nanotube-epoxy composites.
    Spitalsky Z; Tsoukleri G; Tasis D; Krontiras C; Georga SN; Galiotis C
    Nanotechnology; 2009 Oct; 20(40):405702. PubMed ID: 19738313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and mechanical properties of chitosan/carbon nanotubes composites.
    Wang SF; Shen L; Zhang WD; Tong YJ
    Biomacromolecules; 2005; 6(6):3067-72. PubMed ID: 16283728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and characterization of a zirconia/multi-walled carbon nanotube mesoporous composite.
    Wang Z; Xia J; Xia Y; Lu C; Shi G; Zhang F; Zhu F; Li Y; Xia L; Tang J
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3931-4. PubMed ID: 23910298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrocatalytic properties of prussian blue nanoparticles supported on poly(m-aminobenzenesulphonic acid)-functionalised single-walled carbon nanotubes towards the detection of dopamine.
    Adekunle AS; Farah AM; Pillay J; Ozoemena KI; Mamba BB; Agboola BO
    Colloids Surf B Biointerfaces; 2012 Jun; 95():186-94. PubMed ID: 22475526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.