These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 19049116)

  • 1. Thermal stability of Cu and Cu2O nanoparticles in a polyimide film.
    Choi JY; Dong W; Choi DJ; Yoon CS; Kim YH
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4822-5. PubMed ID: 19049116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of CuO and Cu2O nanoparticles in a thick polyimide film by post heat treatment in a controlled-atmosphere.
    Yoon J; Choi DJ; Kim YH
    J Nanosci Nanotechnol; 2011 Jan; 11(1):796-800. PubMed ID: 21446548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of copper based nanoparticles embedded in a relatively thick polyimide film by thermal curing in reducing atmosphere.
    Yoon J; Choi D; Oh DH; Kim TW; Kim YH
    J Nanosci Nanotechnol; 2008 Oct; 8(10):5433-8. PubMed ID: 19198471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of Cu or Cu2O-polyimide nanocomposites using Cu powders and their optical properties.
    Choi DJ; Maeng JS; Ahn KO; Jung MJ; Song SH; Kim YH
    Nanotechnology; 2014 Sep; 25(37):375604. PubMed ID: 25148002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of Cu or Cu2O nanoparticles embedded in a polyimide film for nanofloating gate memory.
    Choi DJ; Ahn KO; Kim EK; Kim YH
    J Nanosci Nanotechnol; 2011 Dec; 11(12):11100-3. PubMed ID: 22409064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of copper nanoparticles in a thick polyimide film cured by rapid thermal annealing.
    Choi MY; Choi DJ; Ahn KO; Ro I; Kim YH; Suh SH
    J Nanosci Nanotechnol; 2012 Apr; 12(4):3637-40. PubMed ID: 22849185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mono-layer of Ni(100-x)Fe(x) nanoparticles fabricated on a polyimide film under different curing atmospheres.
    Lim SK; Chun IS; Ban KS; Yoon CS; Kim CK; Kim YH
    J Colloid Interface Sci; 2006 Mar; 295(1):108-14. PubMed ID: 16112131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible Redox Cycling of Well-Defined, Ultrasmall Cu/Cu
    Pike SD; White ER; Regoutz A; Sammy N; Payne DJ; Williams CK; Shaffer MS
    ACS Nano; 2017 Mar; 11(3):2714-2723. PubMed ID: 28286946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllable synthesis of Cu2O/Cu composites with stable photocatalytic properties.
    Liu X; Li F; Wang H; Yang J; Li Z; Wang Y; Jin H
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4108-13. PubMed ID: 24738359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Realization of Tunable Localized Surface Plasmon Resonance of Cu@Cu
    Yin H; Zhao Y; Xu X; Chen J; Wang X; Yu J; Wang J; Wu W
    ACS Omega; 2019 Sep; 4(11):14404-14410. PubMed ID: 31528793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasma-Modified PI Substrate for Highly Reliable Laser-Sintered Copper Films Using Cu
    Cheng WH; Lee MT; Yasuda K; Song JM
    Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36145025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of Ni nanoparticles by selective oxidation of permalloy thin film during imidization of polyamic acid.
    Lim SK; Yoon CS; Kim CK
    Chem Commun (Camb); 2004 Apr; (7):810-1. PubMed ID: 15045075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of Cu2O nanoparticle films at room temperature for solar water splitting.
    Lin YG; Hsu YK; Lin YC; Chang YH; Chen SY; Chen YC
    J Colloid Interface Sci; 2016 Jun; 471():76-80. PubMed ID: 26990954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-step hydrothermal synthesis of a porous Cu2O film and its photoelectrochemical properties.
    Ji R; Sun W; Chu Y
    Chemphyschem; 2013 Dec; 14(17):3971-6. PubMed ID: 24203622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of Cu/Cu2O nanoparticles by laser ablation in deionized water and their annealing transformation into CuO nanoparticles.
    Gondal MA; Qahtan TF; Dastageer MA; Maganda YW; Anjum DH
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5759-66. PubMed ID: 23882831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surfactant-assisted hollowing of Cu nanoparticles involving halide-induced corrosion-oxidation processes.
    Huang CC; Hwu JR; Su WC; Shieh DB; Tzeng Y; Yeh CS
    Chemistry; 2006 May; 12(14):3805-10. PubMed ID: 16528773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel core-shell-like nanocomposites xCu@Cu
    Dou L; Wang Y; Li Y; Zhang H
    Dalton Trans; 2017 Nov; 46(45):15836-15847. PubMed ID: 29111552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of Core-Shell Nanowire Arrays in a Cu-Cu
    Cao L; Zhu W; Luo B; Miao M; Wang L; Zhang H; Deng Y
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3836-3846. PubMed ID: 31870148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of YBCO thin film thermal stability under 1 ATM oxygen pressure by intermediate Cu2O nanolayer.
    Cheng L; Wang X; Yao X; Wan W; Li FH; Xiong J; Tao BW; Jirsa M
    J Phys Chem B; 2010 Jun; 114(22):7543-7. PubMed ID: 20469891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monodisperse Cu/Cu
    Yang K; Yan Y; Wang H; Sun Z; Chen W; Kang H; Han Y; Zahng W; Sun X; Li Z
    Nanoscale; 2018 Sep; 10(37):17647-17655. PubMed ID: 30204213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.