BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 19049118)

  • 1. Interfacial degradation of biodegradable polyester monolayers at the air/enzyme-containing water interface.
    Kim EY; Lee JK; Lee WK
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4830-3. PubMed ID: 19049118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Miscibility and hydrolytic behavior of poly(trimethylene carbonate) and poly(L-lactide) and their blends in monolayers at the air/water interface.
    Moon HK; Choi YS; Lee JK; Ha CS; Lee WK; Gardella JA
    Langmuir; 2009 Apr; 25(8):4478-83. PubMed ID: 19245220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradable polyesters as crystallization-accelerating agents of poly(l-lactide).
    Tsuji H; Sawada M; Bouapao L
    ACS Appl Mater Interfaces; 2009 Aug; 1(8):1719-30. PubMed ID: 20355788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic degradation of PLLA-PEOz-PLLA triblock copolymers.
    Wang CH; Fan KR; Hsiue GH
    Biomaterials; 2005 Jun; 26(16):2803-11. PubMed ID: 15603776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Branched poly(lactide) synthesized by enzymatic polymerization: effects of molecular branches and stereochemistry on enzymatic degradation and alkaline hydrolysis.
    Numata K; Srivastava RK; Finne-Wistrand A; Albertsson AC; Doi Y; Abe H
    Biomacromolecules; 2007 Oct; 8(10):3115-25. PubMed ID: 17722879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of the air-water interfacial properties of biodegradable polyesters and their block copolymers with poly(ethylene glycol).
    Park HW; Choi J; Ohn K; Lee H; Kim JW; Won YY
    Langmuir; 2012 Aug; 28(31):11555-66. PubMed ID: 22830444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular weight dependence of the poly(L-lactide)/poly(D-lactide) Stereocomplex at the air-water interface.
    Duan Y; Liu J; Sato H; Zhang J; Tsuji H; Ozaki Y; Yan S
    Biomacromolecules; 2006 Oct; 7(10):2728-35. PubMed ID: 17025346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of epsilon-caproyl/D,L-lactyl unit composition on the hydrolytic degradation of poly(D,L-lactide-ran-epsilon-caprolactone)-poly(ethylene glycol)-poly(D,L-lactide-ran-epsilon-caprolactone).
    Cho H; An J
    Biomaterials; 2006 Feb; 27(4):544-52. PubMed ID: 16099497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural effects of terminal groups on nonenzymatic and enzymatic degradations of end-capped poly(L-lactide).
    Kurokawa K; Yamashita K; Doi Y; Abe H
    Biomacromolecules; 2008 Mar; 9(3):1071-8. PubMed ID: 18275150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic chain scission kinetics of poly(epsilon-caprolactone) monolayers.
    Kulkarni A; Reiche J; Kratz K; Kamusewitz H; Sokolov IM; Lendlein A
    Langmuir; 2007 Nov; 23(24):12202-7. PubMed ID: 17949018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic degradation of poly(L-lactide) and poly(epsilon-caprolactone) electrospun fibers.
    Zeng J; Chen X; Liang Q; Xu X; Jing X
    Macromol Biosci; 2004 Dec; 4(12):1118-25. PubMed ID: 15586389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterostereocomplexation between biodegradable and optically active polyesters as a versatile preparation method for biodegradable materials.
    Tsuji H; Yamamoto S; Okumura A; Sugiura Y
    Biomacromolecules; 2010 Jan; 11(1):252-8. PubMed ID: 20000347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic degradation of monolayer for poly(lactide) revealed by real-time atomic force microscopy: effects of stereochemical structure, molecular weight, and molecular branches on hydrolysis rates.
    Numata K; Finne-Wistrand A; Albertsson AC; Doi Y; Abe H
    Biomacromolecules; 2008 Aug; 9(8):2180-5. PubMed ID: 18636774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrolytic behavior of enantiomeric poly(lactide) mixed monolayer films at the air/water interface: stereocomplexation effects.
    Lee WK; Iwata T; Gardella JA
    Langmuir; 2005 Nov; 21(24):11180-4. PubMed ID: 16285788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymers for biodegradable medical devices. II. Hydroxybutyrate-hydroxyvalerate copolymers: hydrolytic degradation studies.
    Holland SJ; Jolly AM; Yasin M; Tighe BJ
    Biomaterials; 1987 Jul; 8(4):289-95. PubMed ID: 3663807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physicomechanical properties of biodegradable poly(D,L-lactide) and poly(D,L-lactide-co-glycolide) films in the dry and wet states.
    Kranz H; Ubrich N; Maincent P; Bodmeier R
    J Pharm Sci; 2000 Dec; 89(12):1558-66. PubMed ID: 11042603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro and in vivo degradation studies for development of a biodegradable patch based on poly(3-hydroxybutyrate).
    Freier T; Kunze C; Nischan C; Kramer S; Sternberg K; Sass M; Hopt UT; Schmitz KP
    Biomaterials; 2002 Jul; 23(13):2649-57. PubMed ID: 12059014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biologically Safe Poly(l-lactic acid) Blends with Tunable Degradation Rate: Microstructure, Degradation Mechanism, and Mechanical Properties.
    Oyama HT; Tanishima D; Ogawa R
    Biomacromolecules; 2017 Apr; 18(4):1281-1292. PubMed ID: 28277656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial Degradation Behavior in Seawater of Polyester Blends Containing Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx).
    Sashiwa H; Fukuda R; Okura T; Sato S; Nakayama A
    Mar Drugs; 2018 Jan; 16(1):. PubMed ID: 29342118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro release behavior of insulin from biodegradable hybrid hydrogel networks of polysaccharide and synthetic biodegradable polyester.
    Zhang Y; Chu CC
    J Biomater Appl; 2002 Apr; 16(4):305-25. PubMed ID: 12099510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.