These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 19049155)

  • 1. Preparation of akaganeite nanorods and their transformation to sphere shape hematite.
    Chen M; Jiang J; Zhou X; Diao G
    J Nanosci Nanotechnol; 2008 Aug; 8(8):3942-8. PubMed ID: 19049155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile route to alpha-FeOOH and alpha-Fe2O3 nanorods and magnetic property of alpha-Fe2O3 nanorods.
    Tang B; Wang G; Zhuo L; Ge J; Cui L
    Inorg Chem; 2006 Jun; 45(13):5196-200. PubMed ID: 16780344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Role of Growth Directors in Controlling the Morphology of Hematite Nanorods.
    Allender CJ; Bowen JL; Celorrio V; Davies-Jones JA; Davies PR; Guan S; O'Reilly P; Sankar M
    Nanoscale Res Lett; 2020 Aug; 15(1):161. PubMed ID: 32761390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of nanocrystal akaganéite from FeCl2 solution oxidized by Acidithiobacillus ferrooxidans cells.
    Xiong H; Liao Y; Zhou L; Xu Y; Wang S
    Environ Sci Technol; 2008 Jun; 42(11):4165-9. PubMed ID: 18589982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-shape assemblage and nanostructure of akaganéite bioformed in FeCl
    Xiong H; Peng S; Zhang B
    Environ Sci Pollut Res Int; 2022 Oct; 29(50):75566-75574. PubMed ID: 35657552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-induced simultaneous synthesis and self-assembly of 3D layered beta-FeOOH nanorods.
    Fang XL; Li Y; Chen C; Kuang Q; Gao XZ; Xie ZX; Xie SY; Huang RB; Zheng LS
    Langmuir; 2010 Feb; 26(4):2745-50. PubMed ID: 19957938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size Tuned Synthesis of FeOOH Nanorods toward Self-Assembled Nanoarchitectonics.
    Karami-Darehnaranji M; Taghizadeh SM; Mirzaei E; Berenjian A; Ebrahiminezhad A
    Langmuir; 2021 Jan; 37(1):115-123. PubMed ID: 33346669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low temperature synthesis of single crystalline iron hydroxide and oxide nanorods in aqueous media.
    Chaudhari NK; Fang B; Bae TS; Yu JS
    J Nanosci Nanotechnol; 2011 May; 11(5):4457-62. PubMed ID: 21780476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the enhanced photoelectrochemical performance of hydrothermally controlled hematite nanostructures for proficient solar water oxidation.
    Park JW; Subramanian A; Mahadik MA; Lee SY; Choi SH; Jang JS
    Dalton Trans; 2018 Mar; 47(12):4076-4086. PubMed ID: 29436539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photosynthetic microorganism-mediated synthesis of akaganeite (beta-FeOOH) nanorods.
    Brayner R; Yéprémian C; Djediat C; Coradin T; Herbst F; Livage J; Fiévet F; Couté A
    Langmuir; 2009 Sep; 25(17):10062-7. PubMed ID: 19572505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of hematite (alpha-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors.
    Wu C; Yin P; Zhu X; OuYang C; Xie Y
    J Phys Chem B; 2006 Sep; 110(36):17806-12. PubMed ID: 16956266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-situ formation of durable akaganeite (β-FeOOH) nanorods on sulfonate-modified poly(ethylene terephthalate) fabric for dual-functional wastewater treatment.
    Wang M; Gao Q; Zhang M; Zhang M; Zhang Y; Hu J; Wu G
    J Hazard Mater; 2020 Mar; 386():121647. PubMed ID: 31740304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile synthesis of self-assembled ultrathin α-FeOOH nanorod/graphene oxide composites for supercapacitors.
    Wei Y; Ding R; Zhang C; Lv B; Wang Y; Chen C; Wang X; Xu J; Yang Y; Li Y
    J Colloid Interface Sci; 2017 Oct; 504():593-602. PubMed ID: 28609743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The study on the growth process of ZnO nanorods].
    Qi XQ; Tao DL; Huang Y; Ling C; Xu YZ; Wei F; Wu JG; Xu DF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Mar; 25(3):321-5. PubMed ID: 16013297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of amino acids on the formation of hematite particles in a forced hydrolysis reaction.
    Kandori K; Sakai M; Inoue S; Ishikawa T
    J Colloid Interface Sci; 2006 Jan; 293(1):108-15. PubMed ID: 16054636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation Mechanism of Monodispersed alpha-Fe2O3 Particles in Dilute FeCl3 Solutions.
    Sugimoto T; Muramatsu A
    J Colloid Interface Sci; 1996 Dec; 184(2):626-38. PubMed ID: 8978568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and phase transition of FeOOH nanorods: strain effects on catalytic water oxidation.
    Park G; Kim YI; Kim YH; Park M; Jang KY; Song H; Nam KM
    Nanoscale; 2017 Apr; 9(14):4751-4758. PubMed ID: 28327704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of manganese doped β-FeOOH and MnFe
    R K C; Rajagopalan V; Sahu NK
    IET Nanobiotechnol; 2020 Dec; 14(9):823-829. PubMed ID: 33399114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous iron oxide based nanorods developed as delivery nanocapsules.
    Wu PC; Wang WS; Huang YT; Sheu HS; Lo YW; Tsai TL; Shieh DB; Yeh CS
    Chemistry; 2007; 13(14):3878-85. PubMed ID: 17300114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Spectral analysis of FeOOH prepared through hydrolysis and neutralization of ferric solutions under different conditions].
    Xiong HX; Liang JR; Xu YQ; Zhou LX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jul; 29(7):2005-9. PubMed ID: 19798993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.