These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 19049195)

  • 1. KeV ion-induced effective surface modifications on InP.
    Sulania I; Tripathi A; Kabiraj D; Varma S; Avasthi DK
    J Nanosci Nanotechnol; 2008 Aug; 8(8):4163-7. PubMed ID: 19049195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topography evolution of 500 keV Ar(4+) ion beam irradiated InP(100) surfaces - formation of self-organized In-rich nano-dots and scaling laws.
    Sulania I; Agarwal DC; Kumar M; Kumar S; Kumar P
    Phys Chem Chem Phys; 2016 Jul; 18(30):20363-70. PubMed ID: 27400760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Assembled Gold Nano-Ripple Formation by Gas Cluster Ion Beam Bombardment.
    Tilakaratne BP; Chen QY; Chu WK
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28885577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies of self-organized nanostructures on InP(111) surfaces after low energy Ar+ ion irradiation.
    Paramanik D; Majumdar S; Sahoo SR; Sahu SN; Varma S
    J Nanosci Nanotechnol; 2008 Aug; 8(8):4227-30. PubMed ID: 19049208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of ion-irradiation-induced nanodot structures on InP surfaces by atom probe tomography.
    Gnaser H; Radny T
    Ultramicroscopy; 2015 Dec; 159 Pt 2():232-9. PubMed ID: 25980895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigations of ripple pattern formation on Germanium surfaces using 100-keV Ar(+) ions.
    Sulania I; Agarwal D; Husain M; Avasthi DK
    Nanoscale Res Lett; 2015; 10():88. PubMed ID: 25852384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-organizing nanodot structures on InP surfaces evolving under low-energy ion irradiation: analysis of morphology and composition.
    Radny T; Gnaser H
    Nanoscale Res Lett; 2014; 9(1):403. PubMed ID: 25246858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of incidence angle in the morphology evolution of Ge surfaces irradiated by medium-energy Au ions.
    Dell'Anna R; Iacob E; Barozzi M; Vanzetti L; Hübner R; Böttger R; Giubertoni D; Pepponi G
    J Phys Condens Matter; 2018 Aug; 30(32):324001. PubMed ID: 29947619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal evolution on SiO
    Kumar M; Datta DP; Basu T; Garg SK; Hofsäss H; Som T
    J Phys Condens Matter; 2018 Aug; 30(33):334001. PubMed ID: 29978837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ripple coarsening on ion beam-eroded surfaces.
    Teichmann M; Lorbeer J; Frost F; Rauschenbach B
    Nanoscale Res Lett; 2014; 9(1):439. PubMed ID: 25302058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The molecular dynamics simulation of ion-induced ripple growth.
    Süle P; Heinig KH
    J Chem Phys; 2009 Nov; 131(20):204704. PubMed ID: 19947701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early stage of ripple formation on Ge(001) surfaces under near-normal ion beam sputtering.
    Carbone D; Alija A; Plantevin O; Gago R; Facsko S; Metzger TH
    Nanotechnology; 2008 Jan; 19(3):035304. PubMed ID: 21817567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fractal characterizations of MeV ion treated CaF
    Pandey RK; Yadav RP; Kumar T; Kumar A; Pathak S; Awasthi S; Singh UB; Pandey AC
    Chaos; 2023 Mar; 33(3):033110. PubMed ID: 37003822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition from ripples to faceted structures under low-energy argon ion bombardment of silicon: understanding the role of shadowing and sputtering.
    Basu T; Datta DP; Som T
    Nanoscale Res Lett; 2013 Jun; 8(1):289. PubMed ID: 23782769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concurrent segregation and erosion effects in medium-energy iron beam patterning of silicon surfaces.
    Redondo-Cubero A; Lorenz K; Palomares FJ; Muñoz A; Castro M; Muñoz-García J; Cuerno R; Vázquez L
    J Phys Condens Matter; 2018 Jul; 30(27):274001. PubMed ID: 29794326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of nanoripples on ZnO flat substrates and nanorods by gas cluster ion bombardment.
    Zeng X; Pelenovich V; Xing B; Rakhimov R; Zuo W; Tolstogouzov A; Liu C; Fu D; Xiao X
    Beilstein J Nanotechnol; 2020; 11():383-390. PubMed ID: 32175218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of TiO
    Szajna K; Kratzer M; Wrana D; Mennucci C; Jany BR; Buatier de Mongeot F; Teichert C; Krok F
    J Chem Phys; 2016 Oct; 145(14):144703. PubMed ID: 27782523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Island shape anisotropy in organic thin film growth induced by ion-beam irradiated rippled surfaces.
    Kratzer M; Wrana D; Szajna K; Krok F; Teichert C
    Phys Chem Chem Phys; 2014 Dec; 16(47):26112-8. PubMed ID: 25361405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of a polysulfone nanofiltration membrane following ion beam irradiation.
    Chennamsetty R; Escobar I
    Langmuir; 2008 May; 24(10):5569-79. PubMed ID: 18439033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of surface composition in morphological evolution of GaAs nano-dots with low-energy ion irradiation.
    Kumar T; Kumar M; Gupta G; Pandey RK; Verma S; Kanjilal D
    Nanoscale Res Lett; 2012 Oct; 7(1):552. PubMed ID: 23035733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.