These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 19049195)

  • 21. Self-organized nanopatterning of polycarbonate surfaces by argon ion sputtering.
    Goyal M; Gupta D; Aggarwal S; Sharma A
    J Phys Condens Matter; 2018 Jul; 30(28):284002. PubMed ID: 29855431
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Raman scattering studies of InP nanostructures created by MeV Sb ion implantation.
    Paramanik D; Varma S
    J Nanosci Nanotechnol; 2007 Jun; 7(6):2197-200. PubMed ID: 17655017
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling of high-fluence irradiation of amorphous Si and crystalline Al by linearly focused Ar ions.
    Lopez-Cazalilla A; Ilinov A; Nordlund K; Djurabekova F
    J Phys Condens Matter; 2019 Feb; 31(7):075302. PubMed ID: 30523994
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ripple formation and smoothening on insulating surfaces.
    Headrick RL; Zhou H
    J Phys Condens Matter; 2009 Jun; 21(22):224005. PubMed ID: 21715744
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adhesion modification of neural stem cells induced by nanoscale ripple patterns.
    Pedraz P; Casado S; Rodriguez V; Giordano MC; Mongeot FB; Ayuso-Sacido A; Gnecco E
    Nanotechnology; 2016 Mar; 27(12):125301. PubMed ID: 26889870
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Implantation induced hardening of nanocrystalline titanium thin films.
    Krishnan R; Amirthapandian S; Mangamma G; Ramaseshan R; Dash S; Tyagi AK; Jayaram V; Raj B
    J Nanosci Nanotechnol; 2009 Sep; 9(9):5461-6. PubMed ID: 19928244
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Emergence and detailed structure of terraced surfaces produced by oblique-incidence ion sputtering.
    Harrison MP; Pearson DA; Bradley RM
    Phys Rev E; 2017 Sep; 96(3-1):032804. PubMed ID: 29346880
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ripple formation on silicon by medium energy ion bombardment.
    Chini TK; Datta DP; Bhattacharyya SR
    J Phys Condens Matter; 2009 Jun; 21(22):224004. PubMed ID: 21715743
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Real-time observation of FIB-created dots and ripples on GaAs.
    Rose F; Fujita H; Kawakatsu H
    Nanotechnology; 2008 Jan; 19(3):035301. PubMed ID: 21817564
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein adsorption on nano-scaled, rippled TiO2 and Si surfaces.
    Sommerfeld J; Richter J; Niepelt R; Kosan S; Keller TF; Jandt KD; Ronning C
    Biointerphases; 2012 Dec; 7(1-4):55. PubMed ID: 22956465
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatially varying chemical phase formation on silicon nano ripple by low energy mixed ions bombardment.
    Mukherjee J; Bhowmik D; Bhattacharyya G; Satpati B; Karmakar P
    J Phys Condens Matter; 2022 Jan; 34(13):. PubMed ID: 34996060
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Low energy Ar+ ion beam irradiation effects on Si ripple pattern.
    Pahlovy SA; Yanagimoto K; Miyamoto I
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1068-73. PubMed ID: 21456140
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Roughness evolution of ion sputtered rotating InP surfaces: pattern formation and scaling laws.
    Frost F; Schindler A; Bigl F
    Phys Rev Lett; 2000 Nov; 85(19):4116-9. PubMed ID: 11056638
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamics of nanoscale triangular features on Ge surfaces.
    Hans S; Parida BK; Pachchigar V; Augustine S; Kp S; Ranjan M
    Nanotechnology; 2022 Jul; 33(40):. PubMed ID: 35767932
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Compositionally modulated ripples induced by sputtering of alloy surfaces.
    Shenoy VB; Chan WL; Chason E
    Phys Rev Lett; 2007 Jun; 98(25):256101. PubMed ID: 17678038
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Theory of nanoscale ripple topographies produced by ion bombardment near the threshold for pattern formation.
    Bradley RM
    Phys Rev E; 2020 Jul; 102(1-1):012807. PubMed ID: 32794991
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ripple density resolution dependence on ripple width.
    Supin AY; Milekhina ON; Nechaev DI; Tomozova MS
    PLoS One; 2022; 17(7):e0270296. PubMed ID: 35867679
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sub-wavelength ripples in fused silica after irradiation of the solid/liquid interface with ultrashort laser pulses.
    Böhme R; Vass C; Hopp B; Zimmer K
    Nanotechnology; 2008 Dec; 19(49):495301. PubMed ID: 21730665
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-assembled nano-dots structures on Si(111) surfaces by oblique angle sputter-deposition.
    Gupta D; Kumari R; Umapathy GR; Singhal R; Ojha S; Sahoo PK; Aggarwal S
    Nanotechnology; 2019 Sep; 30(38):385301. PubMed ID: 31167177
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tuning the surface properties of hydrogel at the nanoscale with focused ion irradiation.
    Kim Y; Abuelfilat AY; Hoo SP; Al-Abboodi A; Liu B; Ng T; Chan P; Fu J
    Soft Matter; 2014 Nov; 10(42):8448-56. PubMed ID: 25225831
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.