BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

649 related articles for article (PubMed ID: 19049430)

  • 41. Dynamics of nanoscopic water: vibrational echo and infrared pump-probe studies of reverse micelles.
    Piletic IR; Tan HS; Fayer MD
    J Phys Chem B; 2005 Nov; 109(45):21273-84. PubMed ID: 16853758
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spectrally- and time-resolved vibrational surface spectroscopy: ultrafast hydrogen-bonding dynamics at D2O/CaF2 interface.
    Bordenyuk AN; Benderskii AV
    J Chem Phys; 2005 Apr; 122(13):134713. PubMed ID: 15847495
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Topological hydrogen-bond definition to characterize the structure and dynamics of liquid water.
    Henchman RH; Irudayam SJ
    J Phys Chem B; 2010 Dec; 114(50):16792-810. PubMed ID: 21114302
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamics of a protein and water molecules surrounding the protein: hydrogen-bonding between vibrating water molecules and a fluctuating protein.
    Yoshioki S
    J Comput Chem; 2002 Feb; 23(3):402-13. PubMed ID: 11908503
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Intramolecular hydrogen bonding and cooperative interactions in carbohydrates via the molecular tailoring approach.
    Deshmukh MM; Bartolotti LJ; Gadre SR
    J Phys Chem A; 2008 Jan; 112(2):312-21. PubMed ID: 18085757
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of alkanethiol self-assembled monolayers with various tail groups on structural and dynamic properties of water films.
    Yang AC; Weng CI
    J Chem Phys; 2008 Oct; 129(15):154710. PubMed ID: 19045221
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Solvation structure of hydroxyl radical by Car-Parrinello molecular dynamics.
    Khalack JM; Lyubartsev AP
    J Phys Chem A; 2005 Jan; 109(2):378-86. PubMed ID: 16833356
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The solvent-dependent shift of the amide I band of a fully solvated peptide as a local probe for the solvent composition in the peptide/solvent interface.
    Paschek D; Pühse M; Perez-Goicochea A; Gnanakaran S; García AE; Winter R; Geiger A
    Chemphyschem; 2008 Dec; 9(18):2742-50. PubMed ID: 19035605
    [TBL] [Abstract][Full Text] [Related]  

  • 49. How protein surfaces induce anomalous dynamics of hydration water.
    Pizzitutti F; Marchi M; Sterpone F; Rossky PJ
    J Phys Chem B; 2007 Jul; 111(26):7584-90. PubMed ID: 17564431
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surface residence and uptake of methyl chloride and methyl alcohol at the air/water interface studied by vibrational sum frequency spectroscopy and molecular dynamics.
    Harper K; Minofar B; Sierra-Hernandez MR; Casillas-Ituarte NN; Roeselova M; Allen HC
    J Phys Chem A; 2009 Mar; 113(10):2015-24. PubMed ID: 19195991
    [TBL] [Abstract][Full Text] [Related]  

  • 51. O-H stretch modes of dodecahedral water clusters: a statistical ab initio study.
    Anick DJ
    J Phys Chem A; 2006 Apr; 110(15):5135-43. PubMed ID: 16610836
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Distribution, structure, and dynamics of cesium and iodide ions at the H2O-CCl4 and H2O-vapor interfaces.
    Wick CD; Dang LX
    J Phys Chem B; 2006 Apr; 110(13):6824-31. PubMed ID: 16570991
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of nonadditive interactions on ion solvation at the water/vapor interface: a molecular dynamics study.
    Yagasaki T; Saito S; Ohmine I
    J Phys Chem A; 2010 Dec; 114(48):12573-84. PubMed ID: 21077653
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hydrophobic molecules slow down the hydrogen-bond dynamics of water.
    Bakulin AA; Pshenichnikov MS; Bakker HJ; Petersen C
    J Phys Chem A; 2011 Mar; 115(10):1821-9. PubMed ID: 21214234
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Anomalous dielectric relaxation of water molecules at the surface of an aqueous micelle.
    Pal S; Balasubramanian S; Bagchi B
    J Chem Phys; 2004 Jan; 120(4):1912-20. PubMed ID: 15268325
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interpretation of the water surface vibrational sum-frequency spectrum.
    Pieniazek PA; Tainter CJ; Skinner JL
    J Chem Phys; 2011 Jul; 135(4):044701. PubMed ID: 21806149
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Infrared spectroscopy and hydrogen-bond dynamics of liquid water from centroid molecular dynamics with an ab initio-based force field.
    Paesani F; Xantheas SS; Voth GA
    J Phys Chem B; 2009 Oct; 113(39):13118-30. PubMed ID: 19722542
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Polarization and experimental configuration analyses of sum frequency generation vibrational spectra, structure, and orientational motion of the air/water interface.
    Gan W; Wu D; Zhang Z; Feng RR; Wang HF
    J Chem Phys; 2006 Mar; 124(11):114705. PubMed ID: 16555908
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adsorption of 1-octanol at the free water surface as studied by Monte Carlo simulation.
    Jedlovszky P; Varga I; Gilányi T
    J Chem Phys; 2004 Jun; 120(24):11839-51. PubMed ID: 15268218
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Time evolution studies of the H2O/quartz interface using sum frequency generation, atomic force microscopy, and molecular dynamics.
    Li I; Bandara J; Shultz MJ
    Langmuir; 2004 Nov; 20(24):10474-80. PubMed ID: 15544375
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.