BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 19049810)

  • 1. Using support vector machines to distinguish enzymes: approached by incorporating wavelet transform.
    Qiu JD; Luo SH; Huang JH; Liang RP
    J Theor Biol; 2009 Feb; 256(4):625-31. PubMed ID: 19049810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using support vector machines for prediction of protein structural classes based on discrete wavelet transform.
    Qiu JD; Luo SH; Huang JH; Liang RP
    J Comput Chem; 2009 Jun; 30(8):1344-50. PubMed ID: 19009604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting subcellular location of apoptosis proteins based on wavelet transform and support vector machine.
    Qiu JD; Luo SH; Huang JH; Sun XY; Liang RP
    Amino Acids; 2010 Apr; 38(4):1201-8. PubMed ID: 19653066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of the types of membrane proteins based on discrete wavelet transform and support vector machines.
    Qiu JD; Sun XY; Huang JH; Liang RP
    Protein J; 2010 Feb; 29(2):114-9. PubMed ID: 20165909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting functional family of novel enzymes irrespective of sequence similarity: a statistical learning approach.
    Han LY; Cai CZ; Ji ZL; Cao ZW; Cui J; Chen YZ
    Nucleic Acids Res; 2004; 32(21):6437-44. PubMed ID: 15585667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of G-protein-coupled receptor classes based on the concept of Chou's pseudo amino acid composition: an approach from discrete wavelet transform.
    Qiu JD; Huang JH; Liang RP; Lu XQ
    Anal Biochem; 2009 Jul; 390(1):68-73. PubMed ID: 19364489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme family classification by support vector machines.
    Cai CZ; Han LY; Ji ZL; Chen YZ
    Proteins; 2004 Apr; 55(1):66-76. PubMed ID: 14997540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Chou's amphiphilic pseudo-amino acid composition and support vector machine for prediction of enzyme subfamily classes.
    Zhou XB; Chen C; Li ZC; Zou XY
    J Theor Biol; 2007 Oct; 248(3):546-51. PubMed ID: 17628605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational chemistry study of 3D-structure-function relationships for enzymes based on Markov models for protein electrostatic, HINT, and van der Waals potentials.
    Concu R; Podda G; Uriarte E; González-Díaz H
    J Comput Chem; 2009 Jul; 30(9):1510-20. PubMed ID: 19086060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting homo-oligomers and hetero-oligomers by pseudo-amino acid composition: an approach from discrete wavelet transformation.
    Qiu JD; Sun XY; Suo SB; Shi SP; Huang SY; Liang RP; Zhang L
    Biochimie; 2011 Jul; 93(7):1132-8. PubMed ID: 21466835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of ubiquitin proteins using artificial neural networks, hidden markov model and support vector machines.
    Jaiswal K
    In Silico Biol; 2007; 7(6):559-68. PubMed ID: 18467768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel algorithm combining support vector machine with the discrete wavelet transform for the prediction of protein subcellular localization.
    Liang RP; Huang SY; Shi SP; Sun XY; Suo SB; Qiu JD
    Comput Biol Med; 2012 Feb; 42(2):180-7. PubMed ID: 22153357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Support Vector Machines for predicting HIV protease cleavage sites in protein.
    Cai YD; Liu XJ; Xu XB; Chou KC
    J Comput Chem; 2002 Jan; 23(2):267-74. PubMed ID: 11924738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wavelet transforms for the characterization and detection of repeating motifs.
    Murray KB; Gorse D; Thornton JM
    J Mol Biol; 2002 Feb; 316(2):341-63. PubMed ID: 11851343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OligoPred: a web-server for predicting homo-oligomeric proteins by incorporating discrete wavelet transform into Chou's pseudo amino acid composition.
    Qiu JD; Suo SB; Sun XY; Shi SP; Liang RP
    J Mol Graph Model; 2011 Sep; 30():129-34. PubMed ID: 21802968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classifying G protein-coupled receptors and nuclear receptors on the basis of protein power spectrum from fast Fourier transform.
    Guo YZ; Li M; Lu M; Wen Z; Wang K; Li G; Wu J
    Amino Acids; 2006 Jun; 30(4):397-402. PubMed ID: 16773242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate prediction of enzyme subfamily class using an adaptive fuzzy k-nearest neighbor method.
    Huang WL; Chen HM; Hwang SF; Ho SY
    Biosystems; 2007; 90(2):405-13. PubMed ID: 17140725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting DNA- and RNA-binding proteins from sequences with kernel methods.
    Shao X; Tian Y; Wu L; Wang Y; Jing L; Deng N
    J Theor Biol; 2009 May; 258(2):289-93. PubMed ID: 19490865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Protein structural class prediction with binary tree-based support vector machines].
    Zhang T; Ding Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Aug; 25(4):921-4. PubMed ID: 18788309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Predicting the cofactors of oxidoreductases by the modified pseudo-amino acid composition].
    Zhang G; Li H; Fang B
    Sheng Wu Gong Cheng Xue Bao; 2008 Aug; 24(8):1439-45. PubMed ID: 18998548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.