These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 19049870)

  • 1. A non-invasive method for silencing gene transcription in honeybees maintained under natural conditions.
    Nunes FM; Simões ZL
    Insect Biochem Mol Biol; 2009 Feb; 39(2):157-60. PubMed ID: 19049870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prolonged gene knockdown in the tsetse fly Glossina by feeding double stranded RNA.
    Walshe DP; Lehane SM; Lehane MJ; Haines LR
    Insect Mol Biol; 2009 Feb; 18(1):11-9. PubMed ID: 19016913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional response of BmToll9-1 and RNAi machinery genes to exogenous dsRNA in the midgut of Bombyx mori.
    Liu J; Smagghe G; Swevers L
    J Insect Physiol; 2013 Jun; 59(6):646-54. PubMed ID: 23602829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption of vitellogenin gene function in adult honeybees by intra-abdominal injection of double-stranded RNA.
    Amdam GV; Simões ZL; Guidugli KR; Norberg K; Omholt SW
    BMC Biotechnol; 2003 Jan; 3():1. PubMed ID: 12546706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relish regulates expression of antimicrobial peptide genes in the honeybee, Apis mellifera, shown by RNA interference.
    Schlüns H; Crozier RH
    Insect Mol Biol; 2007 Dec; 16(6):753-9. PubMed ID: 18093004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systemic RNA-interference in the honeybee Apis mellifera: tissue dependent uptake of fluorescent siRNA after intra-abdominal application observed by laser-scanning microscopy.
    Jarosch A; Moritz RF
    J Insect Physiol; 2011 Jul; 57(7):851-7. PubMed ID: 21439290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNAi-mediated silencing of vitellogenin gene function turns honeybee (Apis mellifera) workers into extremely precocious foragers.
    Marco Antonio DS; Guidugli-Lazzarini KR; do Nascimento AM; Simões ZL; Hartfelder K
    Naturwissenschaften; 2008 Oct; 95(10):953-61. PubMed ID: 18545981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene knockdown by intro-thoracic injection of double-stranded RNA in the brown planthopper, Nilaparvata lugens.
    Liu S; Ding Z; Zhang C; Yang B; Liu Z
    Insect Biochem Mol Biol; 2010 Sep; 40(9):666-71. PubMed ID: 20599616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding.
    Turner CT; Davy MW; MacDiarmid RM; Plummer KM; Birch NP; Newcomb RD
    Insect Mol Biol; 2006 Jun; 15(3):383-91. PubMed ID: 16756557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A survey of the effectiveness of non-cell autonomous RNAi throughout development in the sawfly, Athalia rosae (Hymenoptera).
    Yoshiyama N; Tojo K; Hatakeyama M
    J Insect Physiol; 2013 Apr; 59(4):400-7. PubMed ID: 23376576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA interference in Nilaparvata lugens (Homoptera: Delphacidae) based on dsRNA ingestion.
    Li J; Chen Q; Lin Y; Jiang T; Wu G; Hua H
    Pest Manag Sci; 2011 Jul; 67(7):852-9. PubMed ID: 21370391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNAi mediated silencing of actin expression in adult Litomosoides sigmodontis is specific, persistent and results in a phenotype.
    Pfarr K; Heider U; Hoerauf A
    Int J Parasitol; 2006 May; 36(6):661-9. PubMed ID: 16546192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA interference in the termite Reticulitermes flavipes through ingestion of double-stranded RNA.
    Zhou X; Wheeler MM; Oi FM; Scharf ME
    Insect Biochem Mol Biol; 2008 Aug; 38(8):805-15. PubMed ID: 18625404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA interference (RNAi) in honeybee (Apis mellifera) embryos.
    Dearden PK; Duncan EJ; Wilson MJ
    Cold Spring Harb Protoc; 2009 Jun; 2009(6):pdb.prot5228. PubMed ID: 20147186
    [No Abstract]   [Full Text] [Related]  

  • 15. Gene knockdown analysis by double-stranded RNA injection.
    Philip BN; Tomoyasu Y
    Methods Mol Biol; 2011; 772():471-97. PubMed ID: 22065456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Knock-down of gene expression in hematopoietic cells.
    Scherr M; Venturini L; Eder M
    Methods Mol Biol; 2009; 506():207-19. PubMed ID: 19110629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Octopamine receptors in the honeybee (Apis mellifera) brain and their disruption by RNA-mediated interference.
    Farooqui T; Vaessin H; Smith BH
    J Insect Physiol; 2004 Aug; 50(8):701-13. PubMed ID: 15288204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA interference in Haemonchus contortus: suppression of beta-tubulin gene expression in L3, L4 and adult worms in vitro.
    Kotze AC; Bagnall NH
    Mol Biochem Parasitol; 2006 Jan; 145(1):101-10. PubMed ID: 16253354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of RNAi knockdown effect of tyramine receptor 1 induced by dsRNA and siRNA in brains of the honey bee, Apis mellifera.
    Guo X; Wang Y; Sinakevitch I; Lei H; Smith BH
    J Insect Physiol; 2018; 111():47-52. PubMed ID: 30393170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The efficiency of RNA interference in Bursaphelenchus xylophilus.
    Park JE; Lee KY; Lee SJ; Oh WS; Jeong PY; Woo T; Kim CB; Paik YK; Koo HS
    Mol Cells; 2008 Jul; 26(1):81-6. PubMed ID: 18525237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.