BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 1905021)

  • 21. Divergent evolution of part of the involucrin gene in the hominoids: unique intragenic duplications in the gorilla and human.
    Teumer J; Green H
    Proc Natl Acad Sci U S A; 1989 Feb; 86(4):1283-6. PubMed ID: 2919176
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Systematic repeat addition at a precise location in the coding region of the involucrin gene of wild mice reveals their phylogeny.
    Djian P; Delhomme B
    Genetics; 2005 Apr; 169(4):2199-208. PubMed ID: 15695362
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Absence of a single repeat from the coding region of the human involucrin gene leading to RFLP.
    Simon M; Phillips M; Green H; Stroh H; Glatt K; Burns G; Latt SA
    Am J Hum Genet; 1989 Dec; 45(6):910-6. PubMed ID: 2574003
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tarsius delta- and beta-globin genes: conversions, evolution, and systematic implications.
    Koop BF; Siemieniak D; Slightom JL; Goodman M; Dunbar J; Wright PC; Simons EL
    J Biol Chem; 1989 Jan; 264(1):68-79. PubMed ID: 2491855
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiple L1 progenitors in prosimian primates: phylogenetic evidence from ORF1 sequences.
    Stanhope MJ; Tagle DA; Shivji MS; Hattori M; Sakaki Y; Slightom JL; Goodman M
    J Mol Evol; 1993 Aug; 37(2):179-89. PubMed ID: 8411207
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Complementary oligonucleotides and the origin of the mammalian involucrin gene.
    Tseng H
    Gene; 1997 Jul; 194(1):87-95. PubMed ID: 9266677
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ancestral loss of short wave-sensitive cone visual pigment in lorisiform prosimians, contrasting with its strict conservation in other prosimians.
    Kawamura S; Kubotera N
    J Mol Evol; 2004 Mar; 58(3):314-21. PubMed ID: 15045486
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of a third major SINE family of repetitive sequences in the galago genome.
    Daniels GR; Deininger PL
    Nucleic Acids Res; 1991 Apr; 19(7):1649-56. PubMed ID: 1840654
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Birth of a gene: locus of neuronal BC200 snmRNA in three prosimians and human BC200 pseudogenes as archives of change in the Anthropoidea lineage.
    Kuryshev VY; Skryabin BV; Kremerskothen J; Jurka J; Brosius J
    J Mol Biol; 2001 Jun; 309(5):1049-66. PubMed ID: 11399078
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Origin of the polymorphism of the involucrin gene in Asians.
    Djian P; Delhomme B; Green H
    Am J Hum Genet; 1995 Jun; 56(6):1367-72. PubMed ID: 7762559
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phylogenetic screening of the human genome: identification of differentially hybridizing repetitive sequence families.
    Lloyd JA; Lamb AN; Potter SS
    Mol Biol Evol; 1987 Mar; 4(2):85-98. PubMed ID: 2833668
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Involucrin in the epidermal cells of subprimates.
    Simon M; Green H
    J Invest Dermatol; 1989 May; 92(5):721-4. PubMed ID: 2469735
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Long interspersed L1 repeats in rabbit DNA are homologous to L1 repeats of rodents and primates in an open-reading-frame region.
    Demers GW; Brech K; Hardison RC
    Mol Biol Evol; 1986 May; 3(3):179-90. PubMed ID: 3444399
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular evolutionary processes and conflicting gene trees: the hominoid case.
    Ruvolo M
    Am J Phys Anthropol; 1994 May; 94(1):89-113. PubMed ID: 8042708
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterisation of eight monoclonal antibodies to involucrin.
    Hudson DL; Weiland KL; Dooley TP; Simon M; Watt FM
    Hybridoma; 1992 Jun; 11(3):367-79. PubMed ID: 1500072
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular evolution of intergenic DNA in higher primates: pattern of DNA changes, molecular clock, and evolution of repetitive sequences.
    Maeda N; Wu CI; Bliska J; Reneke J
    Mol Biol Evol; 1988 Jan; 5(1):1-20. PubMed ID: 3357413
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolutionary scenario for acquisition of CAG repeats in human SCA1 gene.
    Kurosaki T; Ninokata A; Wang L; Ueda S
    Gene; 2006 May; 373():23-7. PubMed ID: 16497448
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromosome painting reveals that galagos have highly derived karyotypes.
    Stanyon R; Koehler U; Consigliere S
    Am J Phys Anthropol; 2002 Apr; 117(4):319-26. PubMed ID: 11920367
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genomic data reject the hypothesis of a prosimian primate clade.
    Jameson NM; Hou ZC; Sterner KN; Weckle A; Goodman M; Steiper ME; Wildman DE
    J Hum Evol; 2011 Sep; 61(3):295-305. PubMed ID: 21620437
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The evolution of a family of short interspersed repeats in primate DNA.
    Houck CM; Schmid CW
    J Mol Evol; 1981; 17(3):148-55. PubMed ID: 6267308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.