These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 19051218)

  • 1. Close dependence of fibroblast proliferation on collagen scaffold matrix stiffness.
    Hadjipanayi E; Mudera V; Brown RA
    J Tissue Eng Regen Med; 2009 Feb; 3(2):77-84. PubMed ID: 19051218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interface integration of layered collagen scaffolds with defined matrix stiffness: implications for sheet-based tissue engineering.
    Hadjipanayi E; Brown RA; Mudera V
    J Tissue Eng Regen Med; 2009 Mar; 3(3):230-41. PubMed ID: 19274679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of cell density on osteoblastic differentiation and matrix degradation of biomimetic dense collagen scaffolds.
    Bitar M; Brown RA; Salih V; Kidane AG; Knowles JC; Nazhat SN
    Biomacromolecules; 2008 Jan; 9(1):129-35. PubMed ID: 18095652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collagen stiffness regulates cellular contraction and matrix remodeling gene expression.
    Karamichos D; Brown RA; Mudera V
    J Biomed Mater Res A; 2007 Dec; 83(3):887-94. PubMed ID: 17567861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Matrix stiffness and serum concentration effects matrix remodelling and ECM regulatory genes of human bone marrow stem cells.
    Karamichos D; Skinner J; Brown R; Mudera V
    J Tissue Eng Regen Med; 2008; 2(2-3):97-105. PubMed ID: 18338818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcification by valve interstitial cells is regulated by the stiffness of the extracellular matrix.
    Yip CY; Chen JH; Zhao R; Simmons CA
    Arterioscler Thromb Vasc Biol; 2009 Jun; 29(6):936-42. PubMed ID: 19304575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of cell and collagen concentration on the cell-matrix mechanical relationship in a corneal stroma wound healing model.
    Ahearne M; Wilson SL; Liu KK; Rauz S; El Haj AJ; Yang Y
    Exp Eye Res; 2010 Nov; 91(5):584-91. PubMed ID: 20678499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fibroblast contractility and growth in plastic compressed collagen gel scaffolds with microstructures correlated with hydraulic permeability.
    Serpooshan V; Muja N; Marelli B; Nazhat SN
    J Biomed Mater Res A; 2011 Mar; 96(4):609-20. PubMed ID: 21268235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of substrate stiffness and mechanical loading on fibroblast-induced scaffold remodeling.
    Petersen A; Joly P; Bergmann C; Korus G; Duda GN
    Tissue Eng Part A; 2012 Sep; 18(17-18):1804-17. PubMed ID: 22519582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guiding cell migration in 3D: a collagen matrix with graded directional stiffness.
    Hadjipanayi E; Mudera V; Brown RA
    Cell Motil Cytoskeleton; 2009 Mar; 66(3):121-8. PubMed ID: 19170223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dense fibrillar collagen matrices: a model to study myofibroblast behaviour during wound healing.
    Helary C; Ovtracht L; Coulomb B; Godeau G; Giraud-Guille MM
    Biomaterials; 2006 Sep; 27(25):4443-52. PubMed ID: 16678257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of matrix characteristics on fibroblast proliferation in 3D gels.
    Bott K; Upton Z; Schrobback K; Ehrbar M; Hubbell JA; Lutolf MP; Rizzi SC
    Biomaterials; 2010 Nov; 31(32):8454-64. PubMed ID: 20684983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of mechanical properties of soft tissue scaffolds by atomic force microscopy nanoindentation.
    Zhu Y; Dong Z; Wejinya UC; Jin S; Ye K
    J Biomech; 2011 Sep; 44(13):2356-61. PubMed ID: 21794867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling dermal granulation tissue with the linear fibroblast-populated collagen matrix: a comparison with the round matrix model.
    Eichler MJ; Carlson MA
    J Dermatol Sci; 2006 Feb; 41(2):97-108. PubMed ID: 16226016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnitude and duration of stretch modulate fibroblast remodeling.
    Balestrini JL; Billiar KL
    J Biomech Eng; 2009 May; 131(5):051005. PubMed ID: 19388775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-density collagen gel tubes as a matrix for primary human bladder smooth muscle cells.
    Micol LA; Ananta M; Engelhardt EM; Mudera VC; Brown RA; Hubbell JA; Frey P
    Biomaterials; 2011 Feb; 32(6):1543-8. PubMed ID: 21074843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-generated forces influence the viability, metabolism and mechanical properties of fibroblast-seeded collagen gel constructs.
    Berry CC; Shelton JC; Lee DA
    J Tissue Eng Regen Med; 2009 Jan; 3(1):43-53. PubMed ID: 19039798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of a near-senescent human dermal fibroblast cell line and effect of amelogenin.
    Almqvist S; Werthén M; Johansson A; Törnqvist J; Agren MS; Thomsen P
    Br J Dermatol; 2009 Jun; 160(6):1163-71. PubMed ID: 19298284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Introducing chemical functionality in Fmoc-peptide gels for cell culture.
    Jayawarna V; Richardson SM; Hirst AR; Hodson NW; Saiani A; Gough JE; Ulijn RV
    Acta Biomater; 2009 Mar; 5(3):934-43. PubMed ID: 19249724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primary human dermal fibroblast interactions with open weave three-dimensional scaffolds prepared from synthetic human elastin.
    Rnjak J; Li Z; Maitz PK; Wise SG; Weiss AS
    Biomaterials; 2009 Nov; 30(32):6469-77. PubMed ID: 19712968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.