These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 19051219)
1. Paradoxical effects of sublethal exposure to the naturally derived insecticide spinosad in the dengue vector mosquito, Aedes aegypti. Antonio GE; Sánchez D; Williams T; Marina CF Pest Manag Sci; 2009 Mar; 65(3):323-6. PubMed ID: 19051219 [TBL] [Abstract][Full Text] [Related]
2. Spinosad as an effective larvicide for control of Aedes albopictus and Aedes aegypti, vectors of dengue in southern Mexico. Marina CF; Bond JG; Casas M; Muñoz J; Orozco A; Valle J; Williams T Pest Manag Sci; 2011 Jan; 67(1):114-21. PubMed ID: 21162151 [TBL] [Abstract][Full Text] [Related]
3. Laboratory evaluation of pyriproxyfen and spinosad, alone and in combination, against Aedes aegypti larvae. Darriet F; Corbel V J Med Entomol; 2006 Nov; 43(6):1190-4. PubMed ID: 17162952 [TBL] [Abstract][Full Text] [Related]
4. Aedes aegypti larvae treated with spinosad produce adults with damaged midgut and reduced fecundity. Fernandes KM; Tomé HVV; Miranda FR; Gonçalves WG; Pascini TV; Serrão JE; Martins GF Chemosphere; 2019 Apr; 221():464-470. PubMed ID: 30654260 [TBL] [Abstract][Full Text] [Related]
5. The naturally derived insecticide spinosad is highly toxic to Aedes and Anopheles mosquito larvae. Bond JG; Marina CF; Williams T Med Vet Entomol; 2004 Mar; 18(1):50-6. PubMed ID: 15009445 [TBL] [Abstract][Full Text] [Related]
6. Efficacy of larvicides for the control of dengue, Zika, and chikungunya vectors in an urban cemetery in southern Mexico. Marina CF; Bond JG; Muñoz J; Valle J; Quiroz-Martínez H; Torres-Monzón JA; Williams T Parasitol Res; 2018 Jun; 117(6):1941-1952. PubMed ID: 29713901 [TBL] [Abstract][Full Text] [Related]
7. Toxicity of spinosad to temephos-resistant Aedes aegypti populations in Brazil. Dos Santos Dias L; Macoris ML; Andrighetti MT; Otrera VC; Dias AD; Bauzer LG; Rodovalho CM; Martins AJ; Lima JB PLoS One; 2017; 12(3):e0173689. PubMed ID: 28301568 [TBL] [Abstract][Full Text] [Related]
8. Insecticide resistance and, efficacy of space spraying and larviciding in the control of dengue vectors Aedes aegypti and Aedes albopictus in Sri Lanka. Karunaratne SH; Weeraratne TC; Perera MD; Surendran SN Pestic Biochem Physiol; 2013 Sep; 107(1):98-105. PubMed ID: 25149242 [TBL] [Abstract][Full Text] [Related]
9. Field evaluation in Thailand of spinosad, a larvicide derived from Saccharopolyspora spinosa (Actinomycetales) against Aedes aegypti (L.) larvae. Thavara U; Tawatsin A; Asavadachanukorn P; Mulla MS Southeast Asian J Trop Med Public Health; 2009 Mar; 40(2):235-42. PubMed ID: 19323007 [TBL] [Abstract][Full Text] [Related]
10. Exposure of a Dengue Vector to Tea and Its Waste: Survival, Developmental Consequences, and Significance for Pest Management. Dieng H; Tan Yusop NS; Kamal NN; Ahmad AH; Ghani IA; Abang F; Satho T; Ahmad H; Zuharah WF; Majid AH; Morales RE; Morales NP; Hipolito CN; Noweg GT J Agric Food Chem; 2016 May; 64(18):3485-91. PubMed ID: 27115536 [TBL] [Abstract][Full Text] [Related]
11. Larvicidal and oviposition-altering activity of monoterpenoids, trans-anithole and rosemary oil to the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Waliwitiya R; Kennedy CJ; Lowenberger CA Pest Manag Sci; 2009 Mar; 65(3):241-8. PubMed ID: 19086001 [TBL] [Abstract][Full Text] [Related]
12. Spinosad, a naturally derived insecticide, for control of Aedes aegypti (Diptera: Culicidae): efficacy, persistence, and elicited oviposition response. Pérez CM; Marina CF; Bond JG; Rojas JC; Valle J; Williams T J Med Entomol; 2007 Jul; 44(4):631-8. PubMed ID: 17695018 [TBL] [Abstract][Full Text] [Related]
13. Sublethal effects of spinosad on survival, growth and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae). Wang D; Gong P; Li M; Qiu X; Wang K Pest Manag Sci; 2009 Feb; 65(2):223-7. PubMed ID: 19097023 [TBL] [Abstract][Full Text] [Related]
14. Effects of sublethal exposure to metofluthrin on the fitness of Aedes aegypti in a domestic setting in Cairns, Queensland. Buhagiar TS; Devine GJ; Ritchie SA Parasit Vectors; 2017 May; 10(1):274. PubMed ID: 28569175 [TBL] [Abstract][Full Text] [Related]
15. Survival and swimming behavior of insecticide-exposed larvae and pupae of the yellow fever mosquito Aedes aegypti. Tomé HV; Pascini TV; Dângelo RA; Guedes RN; Martins GF Parasit Vectors; 2014 Apr; 7():195. PubMed ID: 24761789 [TBL] [Abstract][Full Text] [Related]
16. Association of low concentrations of pyriproxyfen and spinosad as an environment-friendly strategy to rationalize Aedes aegypti control programs. Santos VSV; Limongi JE; Pereira BB Chemosphere; 2020 May; 247():125795. PubMed ID: 31927181 [TBL] [Abstract][Full Text] [Related]
17. Effect of Novaluron (Rimon 10 EC) on the mosquitoes Anopheles albimanus, Anopheles pseudopunctipennis, Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Chiapas, Mexico. Arredondo-Jiménez JI; Valdez-Delgado KM Med Vet Entomol; 2006 Dec; 20(4):377-87. PubMed ID: 17199749 [TBL] [Abstract][Full Text] [Related]
18. The sublethal effects of the entomopathic fungus Leptolegnia chapmanii on some biological parameters of the dengue vector Aedes aegypti. Pelizza SA; Scorsetti AC; Tranchida MC J Insect Sci; 2013; 13():22. PubMed ID: 23901823 [TBL] [Abstract][Full Text] [Related]
19. Spinosad: a new larvicide against insecticide-resistant mosquito larvae. Darriet F; Duchon S; Hougard JM J Am Mosq Control Assoc; 2005 Dec; 21(4):495-6. PubMed ID: 16506584 [TBL] [Abstract][Full Text] [Related]
20. Biochemical evidence of efficacy of potash alum for the control of dengue vector Aedes aegypti (Linnaeus). Preet S; Sneha A Parasitol Res; 2011 Jun; 108(6):1533-9. PubMed ID: 21188602 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]