These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 19051299)
1. The t-PA-encapsulated PLGA nanoparticles shelled with CS or CS-GRGD alter both permeation through and dissolving patterns of blood clots compared with t-PA solution: an in vitro thrombolysis study. Wang SS; Chou NK; Chung TW J Biomed Mater Res A; 2009 Dec; 91(3):753-61. PubMed ID: 19051299 [TBL] [Abstract][Full Text] [Related]
2. Accelerating thrombolysis with chitosan-coated plasminogen activators encapsulated in poly-(lactide-co-glycolide) (PLGA) nanoparticles. Chung TW; Wang SS; Tsai WJ Biomaterials; 2008 Jan; 29(2):228-37. PubMed ID: 17953984 [TBL] [Abstract][Full Text] [Related]
3. Turbulent axially directed flow of plasma containing rt-PA promotes thrombolysis of non-occlusive whole blood clots in vitro. Tratar G; Blinc A; Strukelj M; Mikac U; Sersa I Thromb Haemost; 2004 Mar; 91(3):487-96. PubMed ID: 14983224 [TBL] [Abstract][Full Text] [Related]
4. Monodisperse chitosan nanoparticles for mucosal drug delivery. Zhang H; Oh M; Allen C; Kumacheva E Biomacromolecules; 2004; 5(6):2461-8. PubMed ID: 15530064 [TBL] [Abstract][Full Text] [Related]
5. Construction and evaluation of Fe₃O₄-based PLGA nanoparticles carrying rtPA used in the detection of thrombosis and in targeted thrombolysis. Zhou J; Guo D; Zhang Y; Wu W; Ran H; Wang Z ACS Appl Mater Interfaces; 2014 Apr; 6(8):5566-76. PubMed ID: 24693875 [TBL] [Abstract][Full Text] [Related]
6. Surface modification of poly(D,L-lactic-co-glycolic acid) nanoparticles with protamine enhanced cross-presentation of encapsulated ovalbumin by bone marrow-derived dendritic cells. Han R; Zhu J; Yang X; Xu H J Biomed Mater Res A; 2011 Jan; 96(1):142-9. PubMed ID: 21105162 [TBL] [Abstract][Full Text] [Related]
7. Enhanced electrostatic interaction between chitosan-modified PLGA nanoparticle and tumor. Yang R; Shim WS; Cui FD; Cheng G; Han X; Jin QR; Kim DD; Chung SJ; Shim CK Int J Pharm; 2009 Apr; 371(1-2):142-7. PubMed ID: 19118614 [TBL] [Abstract][Full Text] [Related]
8. Surface modification of PLGA nanoparticles with biotinylated chitosan for the sustained in vitro release and the enhanced cytotoxicity of epirubicin. Chen H; Xie LQ; Qin J; Jia Y; Cai X; Nan W; Yang W; Lv F; Zhang QQ Colloids Surf B Biointerfaces; 2016 Feb; 138():1-9. PubMed ID: 26638176 [TBL] [Abstract][Full Text] [Related]
9. Thrombin activatable fibrinolysis inhibitor (TAFI) does not inhibit in vitro thrombolysis by pharmacological concentrations of t-PA. Colucci M; D'Aprile AM; Italia A; Gresele P; Morser J; Semeraro N Thromb Haemost; 2001 Apr; 85(4):661-6. PubMed ID: 11341502 [TBL] [Abstract][Full Text] [Related]
10. Preparation and characterization of cationic chitosan-modified poly(D,L-lactide-co-glycolide) copolymer nanospheres as DNA carriers. Guan XP; Quan DP; Liao KR; Tao Wang ; Peng Xiang ; Mai KC J Biomater Appl; 2008 Jan; 22(4):353-71. PubMed ID: 17494965 [TBL] [Abstract][Full Text] [Related]
11. Preparation and hydrolytic erosion of differently structured PLGA nanoparticles with chitosan modification. Ma FK; Li J; Kong M; Liu Y; An Y; Chen XG Int J Biol Macromol; 2013 Mar; 54():174-9. PubMed ID: 23262384 [TBL] [Abstract][Full Text] [Related]
12. Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Lin YH; Mi FL; Chen CT; Chang WC; Peng SF; Liang HF; Sung HW Biomacromolecules; 2007 Jan; 8(1):146-52. PubMed ID: 17206800 [TBL] [Abstract][Full Text] [Related]
13. In vitro clot lysis as a potential indicator of thrombus resistance to fibrinolysis--study in healthy subjects and correlation with blood fibrinolytic parameters. Colucci M; Scopece S; Gelato AV; Dimonte D; Semeraro N Thromb Haemost; 1997 Apr; 77(4):725-9. PubMed ID: 9134650 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and functionalization of protease-activated nanoparticles with tissue plasminogen activator peptides as targeting moiety and diagnostic tool for pancreatic cancer. Dobiasch S; Szanyi S; Kjaev A; Werner J; Strauss A; Weis C; Grenacher L; Kapilov-Buchman K; Israel LL; Lellouche JP; Locatelli E; Franchini MC; Vandooren J; Opdenakker G; Felix K J Nanobiotechnology; 2016 Dec; 14(1):81. PubMed ID: 27993133 [TBL] [Abstract][Full Text] [Related]
15. Dynamic study of PLGA/CS nanoparticles delivery containing drug model into phantom tissue using CO₂ laser for clinical applications. Mahmoodi M; Khosroshahi ME; Atyabi F J Biophotonics; 2011 Jun; 4(6):403-14. PubMed ID: 21328701 [TBL] [Abstract][Full Text] [Related]
16. Preparation and in vitro evaluation of thienorphine-loaded PLGA nanoparticles. Yang Y; Xie XY; Mei XG Drug Deliv; 2016; 23(3):787-93. PubMed ID: 24870204 [TBL] [Abstract][Full Text] [Related]
17. Multi-ion-crosslinked nanoparticles with pH-responsive characteristics for oral delivery of protein drugs. Lin YH; Sonaje K; Lin KM; Juang JH; Mi FL; Yang HW; Sung HW J Control Release; 2008 Dec; 132(2):141-9. PubMed ID: 18817821 [TBL] [Abstract][Full Text] [Related]
18. A novel technique for loading of paclitaxel-PLGA nanoparticles onto ePTFE vascular grafts. Lim HJ; Nam HY; Lee BH; Kim DJ; Ko JY; Park JS Biotechnol Prog; 2007; 23(3):693-7. PubMed ID: 17465527 [TBL] [Abstract][Full Text] [Related]
19. Chitosan-coated PLGA nanoparticles: a sustained drug release strategy for cell cultures. Chronopoulou L; Massimi M; Giardi MF; Cametti C; Devirgiliis LC; Dentini M; Palocci C Colloids Surf B Biointerfaces; 2013 Mar; 103():310-7. PubMed ID: 23261553 [TBL] [Abstract][Full Text] [Related]
20. G-CSF loaded biodegradable PLGA nanoparticles prepared by a single oil-in-water emulsion method. Choi SH; Park TG Int J Pharm; 2006 Mar; 311(1-2):223-8. PubMed ID: 16423477 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]