These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 19051890)

  • 1. Dielectrophoretic assembly of single gold nanoparticle into nanogap electrodes.
    Yoon SH; Kumar S; Kim GH; Choi YS; Kim TW; Khondaker SI
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3427-33. PubMed ID: 19051890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of assembling ZnO nanoparticles into nanogap electrodes for nanoscale electronic device applications.
    Seo YK; Kumar S; Kim GH
    J Nanosci Nanotechnol; 2011 Jun; 11(6):4852-62. PubMed ID: 21770114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dielectrophoretic trapping of DNA-coated gold nanoparticles on silicon based vertical nanogap devices.
    Strobel S; Sperling RA; Fenk B; Parak WJ; Tornow M
    Phys Chem Chem Phys; 2011 Jun; 13(21):9973-7. PubMed ID: 21387021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency dependence of gold nanoparticle superassembly by dielectrophoresis.
    Gierhart BC; Howitt DG; Chen SJ; Smith RL; Collins SD
    Langmuir; 2007 Nov; 23(24):12450-6. PubMed ID: 17963407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly of metal nanoparticles into nanogaps.
    Barsotti RJ; Vahey MD; Wartena R; Chiang YM; Voldman J; Stellacci F
    Small; 2007 Mar; 3(3):488-99. PubMed ID: 17290481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assembly of molecular nanomagnets into nanogap electrodes by dielectrophoresis.
    Vaheb Y; Calvet LE; Dia N; Mallah T; Catala L
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8710-4. PubMed ID: 23421271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical determination of chromium(VI) using metallic nanoparticle-modified carbon screen-printed electrodes.
    Domínguez-Renedo O; Ruiz-Espelt L; García-Astorgano N; Arcos-Martínez MJ
    Talanta; 2008 Aug; 76(4):854-8. PubMed ID: 18656669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oriented and vectorial immobilization of linear M13 dsDNA between interdigitated electrodes--towards single molecule DNA nanostructures.
    Hölzel R; Gajovic-Eichelmann N; Bier FF
    Biosens Bioelectron; 2003 May; 18(5-6):555-64. PubMed ID: 12706562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dielectrophoretic trapping of nanoparticles with an electrokinetic nanoprobe.
    Wood NR; Wolsiefer AI; Cohn RW; Williams SJ
    Electrophoresis; 2013 Jul; 34(13):1922-30. PubMed ID: 23592407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-terminal electric transport measurements on gold nano-particles combined with ex situ TEM inspection.
    Gao B; Osorio EA; Babaei Gaven K; van der Zant HS
    Nanotechnology; 2009 Oct; 20(41):415207. PubMed ID: 19762943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallel fabrication of DNA-aligned metal nanostructures in microelectrode gaps by a self-organization process.
    Maubach G; Born D; Csáki A; Fritzsche W
    Small; 2005 Jun; 1(6):619-24. PubMed ID: 17193495
    [No Abstract]   [Full Text] [Related]  

  • 13. Influence of induced-charge electrokinetic phenomena on the dielectrophoretic assembly of gold nanoparticles in a conductive-island-based microelectrode system.
    Ding H; Liu W; Shao J; Ding Y; Zhang L; Niu J
    Langmuir; 2013 Oct; 29(39):12093-103. PubMed ID: 23998619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transfer printing of submicrometer patterns of aligned carbon nanotubes onto functionalized electrodes.
    Li S; Yan Y; Liu N; Chan-Park MB; Zhang Q
    Small; 2007 Apr; 3(4):616-21. PubMed ID: 17294494
    [No Abstract]   [Full Text] [Related]  

  • 15. AC dielectrophoretic manipulation and electroporation of vaccinia virus using carbon nanoelectrode arrays.
    Madiyar FR; Haller SL; Farooq O; Rothenburg S; Culbertson C; Li J
    Electrophoresis; 2017 Jun; 38(11):1515-1525. PubMed ID: 28211116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical and electrochemical detection of NADH and of NAD+-dependent biocatalyzed processes by the catalytic deposition of copper on gold nanoparticles.
    Shlyahovsky B; Katz E; Xiao Y; Pavlov V; Willner I
    Small; 2005 Feb; 1(2):213-6. PubMed ID: 17193433
    [No Abstract]   [Full Text] [Related]  

  • 17. Complete oxidation of ethylene over supported gold nanoparticle catalysts.
    Ahn HG; Choi BM; Lee DJ
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3599-603. PubMed ID: 17252819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enabling measurements of low-conductance single molecules using gold nanoelectrodes.
    Welch K; Blom T; Leifer K; Strømme M
    Nanotechnology; 2011 Mar; 22(12):125707. PubMed ID: 21317485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic deposition of Au nanoparticles on the designed electrode surface and its application in glucose detection.
    Zhang H; Liu R; Sheng Q; Zheng J
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):532-5. PubMed ID: 21115279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of specific bioparticles using antibodies-coated gold nanoparticles and dielectrophoretic impedance measurement.
    Huang JT; Yu HW; Hou SY; Fang SB; Lee HC; Yang CZ
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3174-7. PubMed ID: 19163381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.