These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 19051900)

  • 1. Self-assembly of Au-Ag alloy nanoparticles by thermal annealing.
    Yao RH; She JC; Xu NS; Deng SZ; Chen J
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3487-92. PubMed ID: 19051900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A facile and controllable strategy to synthesize Au-Ag alloy nanoparticles within polyelectrolyte multilayer nanoreactors upon thermal reduction.
    Shang L; Jin L; Guo S; Zhai J; Dong S
    Langmuir; 2010 May; 26(9):6713-9. PubMed ID: 20017511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Preparation and surface enhanced raman spectroscopic studies on Au-Ag alloy nanoparticles].
    Jin YL; Yao JL; Gu RA
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1309-11. PubMed ID: 18800711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Synthesis and absorption spectra properties of Au-Ag alloy nanoparticles using gallic acid as reductant].
    Wang WX; Huang YP; Chen QF; Xu SK; Yang DZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Aug; 28(8):1726-9. PubMed ID: 18975789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reproducible patterning of single au nanoparticles on silicon substrates by scanning probe oxidation and self-assembly.
    Ling X; Zhu X; Zhang J; Zhu T; Liu M; Tong L; Liu Z
    J Phys Chem B; 2005 Feb; 109(7):2657-65. PubMed ID: 16851271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Converting self-assembled gold nanoparticle/dendrimer nanodroplets into horseshoe-like nanostructures by thermal annealing.
    Fahmi A; D'Aléo A; Williams RM; De Cola L; Gindy N; Vögtle F
    Langmuir; 2007 Jul; 23(14):7831-5. PubMed ID: 17555336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and growth mechanism of pentagonal bipyramid-shaped gold-rich Au/Ag alloy nanoparticles.
    Zhang X; Tsuji M; Lim S; Miyamae N; Nishio M; Hikino S; Umezu M
    Langmuir; 2007 May; 23(11):6372-6. PubMed ID: 17469858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monodisperse icosahedral Ag, Au, and Pd nanoparticles: size control strategy and superlattice formation.
    Zhang Q; Xie J; Yang J; Lee JY
    ACS Nano; 2009 Jan; 3(1):139-48. PubMed ID: 19206260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybridization of localized surface plasmon resonance-based Au-Ag nanoparticles.
    Zhu S; Fu Y
    Biomed Microdevices; 2009 Jun; 11(3):579-83. PubMed ID: 19085108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A route for modulating the diameter of cylindrical silicon nanowires by using thermal self-ordering silver nanoparticles.
    Lee SH; Lee TI; Moon KJ; Myoung JM
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11777-82. PubMed ID: 24156659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial electronic structure of gold nanoparticles on Si(100): alloying versus quantum size effects.
    Sohn Y; Pradhan D; Radi A; Leung KT
    Langmuir; 2009 Aug; 25(16):9557-63. PubMed ID: 19518081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-temperature preparation of highly conductive thin films from acrylic acid-stabilized silver nanoparticles prepared through ligand exchange.
    Vo DQ; Shin EW; Kim JS; Kim S
    Langmuir; 2010 Nov; 26(22):17435-43. PubMed ID: 20919702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective dissolution of the silver component in colloidal Au and Ag multilayers: a facile way to prepare nanoporous gold film materials.
    Lu Y; Wang Q; Sun J; Shen J
    Langmuir; 2005 May; 21(11):5179-84. PubMed ID: 15896068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid synthesis of highly monodisperse Au(x)Ag(1-x) alloy nanoparticles via a half-seeding approach.
    Chng TT; Polavarapu L; Xu QH; Ji W; Zeng HC
    Langmuir; 2011 May; 27(9):5633-43. PubMed ID: 21462957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of silver nanoparticles and nanocraters on silicon wafers.
    He J; Kunitake T
    Langmuir; 2006 Aug; 22(18):7881-4. PubMed ID: 16922578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lasting antibacterial activities of Ag-TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation.
    Akhavan O
    J Colloid Interface Sci; 2009 Aug; 336(1):117-24. PubMed ID: 19394952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemiresistive sensing of volatile organic compounds with films of surfactant-stabilized gold and gold-silver alloy nanoparticles.
    Ibañez FJ; Zamborini FP
    ACS Nano; 2008 Aug; 2(8):1543-52. PubMed ID: 19206357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion-induced elongation of gold nanoparticles in silica by irradiation with Ag and Cu swift heavy ions: track radius and energy loss threshold.
    Dawi EA; Vredenberg AM; Rizza G; Toulemonde M
    Nanotechnology; 2011 May; 22(21):215607. PubMed ID: 21451236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of ultra-thin silicon nanowire arrays using ion beam assisted chemical etching.
    Tan Z; Shi W; Guo C; Zhang Q; Yang L; Wu X; Cheng GA; Zheng R
    Nanoscale; 2015 Nov; 7(41):17268-73. PubMed ID: 26440414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Achieving a narrow size distribution of Au particles at a precise depth in SiO2 by segregation of Au precipitates.
    Charnvanichborikarn S; Conway MJ; Wong-Leung J; Williams JS
    Nanotechnology; 2009 May; 20(18):185603. PubMed ID: 19420619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.