BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 19052109)

  • 1. Ipsilateral eye cortical maps are uniquely sensitive to binocular plasticity.
    Faguet J; Maranhao B; Smith SL; Trachtenberg JT
    J Neurophysiol; 2009 Feb; 101(2):855-61. PubMed ID: 19052109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of vision by monocular deprivation in adult mice.
    Prusky GT; Alam NM; Douglas RM
    J Neurosci; 2006 Nov; 26(45):11554-61. PubMed ID: 17093076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The refinement of ipsilateral eye retinotopic maps is increased by removing the dominant contralateral eye in adult mice.
    Smith SL; Trachtenberg JT
    PLoS One; 2010 Mar; 5(3):e9925. PubMed ID: 20369001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A switch from inter-ocular to inter-hemispheric suppression following monocular deprivation in the rat visual cortex.
    Pietrasanta M; Restani L; Cerri C; Olcese U; Medini P; Caleo M
    Eur J Neurosci; 2014 Jul; 40(1):2283-92. PubMed ID: 24689940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical imaging of the intrinsic signal as a measure of cortical plasticity in the mouse.
    Cang J; Kalatsky VA; Löwel S; Stryker MP
    Vis Neurosci; 2005; 22(5):685-91. PubMed ID: 16332279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anatomical correlates of functional plasticity in mouse visual cortex.
    Antonini A; Fagiolini M; Stryker MP
    J Neurosci; 1999 Jun; 19(11):4388-406. PubMed ID: 10341241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experience-dependent binocular competition in the visual cortex begins at eye opening.
    Smith SL; Trachtenberg JT
    Nat Neurosci; 2007 Mar; 10(3):370-5. PubMed ID: 17293862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contralateral Bias of High Spatial Frequency Tuning and Cardinal Direction Selectivity in Mouse Visual Cortex.
    Salinas KJ; Figueroa Velez DX; Zeitoun JH; Kim H; Gandhi SP
    J Neurosci; 2017 Oct; 37(42):10125-10138. PubMed ID: 28924011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enduring critical period plasticity visualized by transcranial flavoprotein imaging in mouse primary visual cortex.
    Tohmi M; Kitaura H; Komagata S; Kudoh M; Shibuki K
    J Neurosci; 2006 Nov; 26(45):11775-85. PubMed ID: 17093098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experience-enabled enhancement of adult visual cortex function.
    Tschetter WW; Alam NM; Yee CW; Gorz M; Douglas RM; Sagdullaev B; Prusky GT
    J Neurosci; 2013 Mar; 33(12):5362-6. PubMed ID: 23516301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional Differentiation of Mouse Visual Cortical Areas Depends upon Early Binocular Experience.
    Salinas KJ; Huh CYL; Zeitoun JH; Gandhi SP
    J Neurosci; 2021 Feb; 41(7):1470-1488. PubMed ID: 33376158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical period plasticity matches binocular orientation preference in the visual cortex.
    Wang BS; Sarnaik R; Cang J
    Neuron; 2010 Jan; 65(2):246-56. PubMed ID: 20152130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Layer- and cell-type-specific subthreshold and suprathreshold effects of long-term monocular deprivation in rat visual cortex.
    Medini P
    J Neurosci; 2011 Nov; 31(47):17134-48. PubMed ID: 22114282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experience-dependent orientation plasticity in the visual cortex of rats chronically exposed to a single orientation.
    O'Hashi K; Miyashita M; Tanaka S
    Neurosci Res; 2007 May; 58(1):86-90. PubMed ID: 17300846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity.
    Mrsic-Flogel TD; Hofer SB; Ohki K; Reid RC; Bonhoeffer T; Hübener M
    Neuron; 2007 Jun; 54(6):961-72. PubMed ID: 17582335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The critical period for ocular dominance plasticity in the Ferret's visual cortex.
    Issa NP; Trachtenberg JT; Chapman B; Zahs KR; Stryker MP
    J Neurosci; 1999 Aug; 19(16):6965-78. PubMed ID: 10436053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Cortical Mechanisms Underlying Ocular Dominance Plasticity in Adults are Not Orientationally Selective.
    Wang Y; Yao Z; He Z; Zhou J; Hess RF
    Neuroscience; 2017 Dec; 367():121-126. PubMed ID: 29111362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional masking of deprived eye responses by callosal input during ocular dominance plasticity.
    Restani L; Cerri C; Pietrasanta M; Gianfranceschi L; Maffei L; Caleo M
    Neuron; 2009 Dec; 64(5):707-18. PubMed ID: 20005826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of visual experience in the formation of binocular projections in frogs.
    Udin SB
    Cell Mol Neurobiol; 1985 Jun; 5(1-2):85-102. PubMed ID: 3896495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binocular Disparity Selectivity Weakened after Monocular Deprivation in Mouse V1.
    Scholl B; Pattadkal JJ; Priebe NJ
    J Neurosci; 2017 Jul; 37(27):6517-6526. PubMed ID: 28576937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.